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Summary

Operational Test and Evaluation (OT&E) is testing conducted on a full-up system, to

determine for a decision-maker, if it will be able to perform the tasks for which it was

designed. Current methods used for the analysis of OT&E data include standard

statistical methods that are adequate for summarizing the information gathered during a

testing phase (information at a functional- performance level). However, these methods

have proved inadequate in providing the type of information needed by the decision-

maker in the OT&E context: information on the system's ability to accomplish the tasks

for which it was designed.

The Intelligent Hierarchical Decision Architecture provides a neuro-fuzzy analysis

methodology meant to take test data at the functional-performance level gathered in a

laboratory, through modeling and simulation, or through field testing and

aggregates/synthesizes it to provide information at the task-accomplishment level, where

it is meaningful to the decision-maker. The analysis methodology is composed of four

separate stages. Raw test data enters the Intelligent Hierarchical Decision Architecture as

individual observations of the system's functional performance and the final output is a

probabilistic system performance bound at the task-accomplishment level.

The first stage of the Intelligent Hierarchical Decision Architecture is the

Clustering Methodology. Here, the raw test data are transformed into a Composite Fuzzy

Membership Function -- a fuzzy distribution -- for further processing. A Composite

Fuzzy Membership Function is formed for each test measurement by first, defining Basic

Membership Functions that divide the universe of discourse for the variable into relevant

fuzzy sets. These Basic Membership Functions are defined either heuristically or through

a fuzzy clustering algorithm, depending on the amount of background information

available for the variable. Once the Basic Membership Functions are defined, one of four
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Compositional Methods is used to form the Composite Fuzzy Membership Function. The

optimal Compositional Method to be used for each data set is chosen based upon the

calculation of several Fuzzy-Statistical Similarity Measures. These Fuzzy-Statistical

Similarity Measures were developed to relate the fuzzy distribution and a normal

statistical distribution that would be derived from the same data.

Once the Composite Fuzzy Membership Functions for each test measure have

been developed, they are used to stimulate a Fuzzy Associative Memory, the second stage

of the Intelligent Hierarchical Decision Architecture. The Fuzzy Associative Memory

transforms the Composite Fuzzy Membership Functions at the functional-performance

level to a Composite Fuzzy Membership Function at the task-accomplishment level. The

Fuzzy Associative Memory rules can be built from modeling and simulation data,

previously gathered test data, or heuristically. The rules are written to relate each

individual test measure at the functional-performance level to the measure at the task-

accomplishment level. Once all the measures have been transformed to the task-

accomplishment level, they are combined into a single Composite Fuzzy Membership

Function at that level using the result of the Reduction Theorem. Thus, the output of the

second phase of the Intelligent Hierarchical Decision Architecture is a single Composite

Fuzzy Membership Function representing an aggregation of all the gathered test data.

The third stage of the Intelligent Hierarchical Decision Architecture makes use of

a Fuzzy Cognitive Map to adjust the measured system performance at the task-

accomplishment level to account for factors that could not be controlled or tested during

the testing phase. In this stage, several expert-generated Fuzzy Cognitive Maps are

combined to yield a single, global Fuzzy Cognitive Map representing the experts'

consensus. Each factor is considered in turn, and its impact on the outcome of the testing

effort is accessed. The best-case and worst-case adjustment to the test-measured

performance are made using the output of the Fuzzy Cognitive Map as a fuzzy linguistic

hedge. The result of the third stage, then, is two Composite Fuzzy Membership

xvii



Functions, at the task-accomplishment level, representing the Best-Case and Worst-Case

Adjusted System Performance.

The final stage of the Intelligent Hierarchical Decision Architecture is to

aggregate the information across all the logical divisions of the system performance. This

is done using Dempster's Rule of Combination from the Dempster-Shafer Theory of

Evidential Reasoning. The evidence from each logical division, in the form of fuzzy sets,

is transformed to basic probability assignments using alpha-cut levels of the fuzzy sets.

Each division's evidence is combined in turn, to provide the final probabilistic belief

interval that is provided to the decision-maker as the final Intelligent Hierarchical

Decision Architecture output.

As a proof of concept, the Intelligent Hierarchical Decision Architecture

methodology has been applied to data from a program loosely based upon an Air Force

Operational Test and Evaluation program. The data from that testbed program consisted

of ten observations of six functional-performance measures against four separate enemy

threat systems: 240 data points. The Intelligent Hierarchical Decision Architecture was

used to aggregate and synthesize these data into a best-case probabilistic performance

bound and a worst-case probabilistic performance bound at the task-accomplishment

level.

Finally, an information content measure, based upon fuzzy entropy concepts was

developed to measure the amount of ambiguity associated with decision-making

throughout the stages of the Intelligent Hierarchical Decision Architecture. This measure

shows that the difficulty associated with making a decision decreases as the data is

processed through the Intelligent Hierarchical Decision Architecture.
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CHAPTER ONE

INTRODUCTION

1. INTRODUCTION

Decision-makers long for meaningful information that will make their decision processes

straightforward and accurate. They prefer not to have to wade through reams of computer

printouts, mountains of data products, or page after page of statistical analyses to

understand the information they need to make an informed decision. Decision-makers

want information that is relevant, meaningful, and concise. This need for information at

the appropriate level is universal -- from the individual trying to decide what money

market fund to invest in, to the plant manager trying to decide whether the product being

produced will meet market demands, to the military strategist trying to determine if the

new piece of equipment will help the force accomplish their objectives.

Decision-makers in the information age are faced with a decision-making

dilemma. They are bombarded with overwhelming quantities of information from a

variety of sources, some relevant to the decision they are trying to make, and some not.

How should the decision-maker separate the wheat from the chaff to make informed, yet

timely, decisions? A mechanism needs to be developed through which basic information,

or low-level data, can be brought together in a meaningful and systematic way, to provide

information at a level that helps the decision-maker with his task. The mechanism needs

to be flexible enough to cope with the inaccuracies and uncertainties in the data sources,
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yet structured enough to provide a deterministic method for decision-making. This

research aims to develop a methodology through which low-level data can be aggregated

and synthesized to produce information that is meaningful for making high-level

decisions using intelligent techniques such as neural networks and fuzzy logic.

The intelligent techniques, including fuzzy logic and neural networks, are being

considered for the attractive qualities they bring to bear on the problem. Neural networks

and fuzzy systems estimate functions from sample data. However, unlike mathematical

or statistical approaches, they do not require a mathematical model of the function -- they

are model-free estimators [1]. While both can be used to represent input-output relations

using a model-free approach, each has its strengths and weaknesses stemming from the

mechanism used to represent the input-output associations. Neural networks are modeled

after the physical architecture of the brain and depend on a vast number of interconnected

neurons to encode and recall information, while recall and associations in a fuzzy logic

system are based upon the way the brain deals with information, building heuristic rules

to guide actions.

The human brain excels at certain tasks, yet has limited capabilities in others. For

example, there is a limit to the number of mathematical calculations a person can do "in

his head," yet the same person has no problem recognizing a familiar face in a crowd or

picking out the conversation on a noisy telephone line. On the other hand, anyone who

has done any computer programming knows that a computer can be easily programmed to

perform mathematical calculations far beyond the abilities of most human beings.

However, that same programmer has experienced the frustration associated with

programming the computer to recognize characters that a three-year child can easily

discern. Because the neural network structure is patterned after the brain's construct of

interconnected neurons, it is most suited for those applications that the brain can easily

accomplish, such as pattern recognition, signal classification, and prediction tasks [2].

The drawback of neural networks is their black-box mode of operation. Once a network

has been trained to accomplish a task, it will accomplish that task dutifully. However, if

2



the user wants to understand why the neural network made the decision that it did, he is

faced with a tangle of interconnections and weights that provide little or no intuitive

insight into the network's operation. Another drawback of the neural network structure,

is its propensity to "relearn" new patterns or associations, replacing those already encoded

into the network. This feature causes uncertainty in the knowledge of what the neural

network has actually learned, and what the network will recall when it is used. Finally, a

large amount of data is required to train a neural network. In the case being examining in

this work, the quantity of data that would be required to adequately train the network, is

seldom available.

On the other hand, fuzzy logic-based systems operate based on the human

common-sense reasoning approach; such as, if the room is cold, turn on the heater for a

while. Fuzzy logic provides a mechanism for quantifying the concepts "cold" and
"awhile" and building a structure for determining which actions should be taken as a

result of the current state of the system. Additionally, the mechanism of the fuzzy rule

base which is used for determining the outputs/actions, allows the user to backtrack

through the inference process and determine which input conditions caused the decision

that is being made. This is an attractive property for a system used by a decision-maker

who wants to understand the rationale for the decisions that are being made. The

drawbacks mentioned above in neural network operation -- the inability to justify the

decisions that are being made, the inability to determine what the network is truly trained

to do, and the lack of an adequate amount of training data to train the neural network --

cause this research to rely more heavily on fuzzy-logic based techniques and use the

neural network structures only in the form of Fuzzy Associative Memories. The Fuzzy

Associative Memory falls in the category of fuzzy neural networks because of its neural-

like structure, yet retains the attractive qualities of the fuzzy-logic based decision

techniques -- allowing the inferencing to be justified by looking inside the system to

determine which rules are being used to give current results.

3



1.1 TEST AND EVALUATION: A DECISION-MAKER'S TOOL

Test and Evaluation (T&E) is a process through which a system-under-test is assessed to

determine its technical performance characteristics or its ability to perform certain tasks.

It is conducted throughout a system's lifecycle for various reasons including circuit level

testing to verify design concepts; component level testing in extreme environmental

conditions to verify operational temperature constraints; and complete system testing to

verify component interoperability. The results of the T&E process are a critical tool in

the decision-maker's toolbox.

The information provided on system characteristics and task performance during

T&E is used for varying decision-making processes throughout the system's lifecycle.

These two distinct types of information (i.e., technical system characteristics and

operational task performance characteristics) are the result of two distinct phases of the

T&E process: Developmental Test and Evaluation (DT&E) and Operational Test and

Evaluation (OT&E).

DT&E is testing conducted by the system's developer in order to verify

specification compliance and design maturity. OT&E, on the other hand, is testing

conducted by the user of the system, or by an independent agent, in order to verify that the

full-up system will be able to perform its designated tasks in its intended operational

environment [3]. Both types of information are important for decision-making at various

stages of the system's lifecycle. The information on fulfillment of system specifications

is necessary to make decisions on design and production as the system is being built.

Overall system performance information is necessary to determine if the finished product

will meet customer expectations.

Determining if a product meets customers' requirements is an important aspect in

the production and sale of any product. OT&E is meant to provide that type of

information. Although a structured OT&E mechanism is most evident within the
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Department of Defense testing community , similar testing is conducted by the producers

and manufacturers of all types of products. The product testing conducted by the

publishers of Consumer Reports magazine is an excellent example of OT&E conducted

on consumer products [4]. The information provided as a result of the T&E conducted by

the magazine's publisher, provides information to the consumer on the ability of the

system-under-test to meet consumer requirements. This focus on providing information

on the overall system performance, that is relevant to the product's end user, requires

different test and evaluation tools than those used in laboratory testing, whose goal is to

determine technical system performance characteristics.

1.1.1 DIFFERENT Focus

The differing focuses of OT&E and DT&E (i.e., providing information on task

accomplishment capabilities versus providing information on technical specification

compliance) require differing sets of analysis tools. Three primary differences, described

below, highlight the need for a new analysis technique to be added to the OT&E toolbox.

First and foremost, the evaluation criteria used in OT&E are the operational users'

requirements. On the other hand, the evaluation criteria used for DT&E are the technical

design specifications for the system. The contrast between DT&E and OT&E evaluation

criteria can be illustrated in the considerations made in the purchase of an automobile.

When an individual decides to buy a car, he is somewhat concerned that the car has been

1 The Government Accounting Office, the Office of Management and Budget, and President Nixon's Blue

Ribbon Panel recommended the creation of a structured operational testing mechanism within the military
services in 1974. The four Operational Test Agencies (OTAs): the Air Force Operational Test and
Evaluation Center (AFOTEC), the Army Operational Test and Evaluation Command (OPTEC), the Navy
Operational Test and Evaluation Force (OPTEVFOR), and the Marine Corps Operational Test and
Evaluation Agency (MCOTEA) were created in that year to provide a means for testing and evaluating
system performance in as close to an operational environment as possible. The OTA's job is to determine if
the system-under-test meets the warfighters' needs and to provide that information to the decision-maker
who will decide whether or not the system will be acquired for use by the military services.
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designed, built, and tested to an adequate set of specifications, but the real purchase

determination isn't made until the individual has determined that the car meets all his

requirements (e.g., has enough passenger and cargo room for his family, gets adequate

gas mileage, provides enough safety features, etc.). Additionally, the buyer will want to

take the car for a test drive to see how it "feels." Only after he is satisfied that the car

meets all his requirements and feels good to him, will he make his purchasing decision.

This car buyer has conducted an OT&E: testing the car to his user requirements and

determining if they are satisfied. This OT&E was aimed at answering the "how does it

feel" and "does it meet my needs" type of questions for the end user. Before the car made

it to the showroom floor, the car's producer conducted a DT&E on the car. The DT&E

was a series of tests aimed at determining if the car met its design specifications;

answering the "does the engine provide the specified amount of torque to the drive train"

and "does the battery output the specified voltage" type of questions. In conducting the

DT&E, the manufacturer can take measurements of the system component's technical

performance and compare those values to the systems' specifications: a straightforward

measure and compare analysis. The OT&E analysis is a little trickier. The person

conducting the OT&E has to be able to quantify concepts that might not be measurable

(e.g., the knobs on the instrument panel do not feel right) and aggregate the observed

data into a meaningful conclusion with respect to the decision he is trying to make on

buying the car.

Closely related to the differing evaluation criteria, are the different environments

in which DT&E and OT&E are conducted. Most of the testing for DT&E is done in a

laboratory setting, or a highly controlled environment, with the system developers

operating the equipment. OT&E, on the other hand, is conducted in as close to an

operational environment as possible. This operational environment includes taking the

system to the location where it would normally be operated, and letting the users operate

the system. Frequently there is quite a difference in system performance between when a

Ph.D. engineer is operating it in a sterile laboratory environment and when the end user
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puts it through its paces in its intended operational environment! Going back to the car

purchasing example, the DT&E of the car radio might consist of looking at such things as

the signal to noise ratios across the frequency bands, measuring the SNRs to insure that

they meet or exceed the values that were given in the radio's specification. The OT&E

on the other hand, might be a part of the customer's test drive. As he is driving the car

through the dense city traffic that he has to negotiate on his way to work, he turns on the

radio to see if he can receive his favorite radio station. If the reception is clear and

steady, the radio will pass his OT&E. While the DT&E is a very controlled test, the

performance that is being assessed during the OT&E is being influenced by a number of

factors which are not being considered or controlled.

Finally, because DT&E is conducted on system components during the

development stage and OT&E is conducted on the full-up system after it has been

designed and built, there is a difference in the number of tests that each testing effort can

afford to conduct. DT&E can perform numerous replications of typical experimental

designs -- collecting enough data to satisfy sample size requirements to perform standard

statistical analyses. While, on the other hand, because OT&E conducts tests of the full-up

system in an environment meant to replicate the operational environment, the testing is

typically expensive. Therefore, the sample sizes collected during OT&E are frequently

inadequate for standard statistical analysis techniques.

So, the OT&E tester/analyst is faced with a number of challenges that do not

concern the DT&E community. In OT&E, the tester/analyst must:

" quantify concepts that are not numerically quantifiable

* aggregate observed data to form meaningful conclusions that are at a higher

information-level than where the data can typically be collected

• consider the results from experiments that include unknown or uncontrollable

factors

" draw conclusions from limited sample sized data sets.
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These challenges require a new set of analysis tools be added to the OT&E analysis

toolbox.

1.1.2 CURRENT ANALYSIS METHODS

Current analysis methods within the OT&E community are limited to standard statistical

methods and a limited use of Modeling and Simulation. Although both have proved

inadequate in providing information to the decision-maker at the appropriate level, they

continue to be used, and in fact, endorsed as the preferred analysis methods. Mr. Don

Giadrosich, in [5], states "... statistical methods offer a sound and logical means of

treatment; there is no equally satisfactory alternative." Ironically, within the same section

of his work, Mr. Giadrosich also states

We should not overlook the fact that in certain instances a qualitative
description of what happened may be more valuable than large
amounts of quantitative data.... Thus, there are instances when
unquestioning acceptance of quantitative measurements would mask
or even misrepresent the actual performance of an item or system
undergoing testing.

seemingly, acknowledging the need for a more satisfactory analysis method. However,

throughout the rest of his work, one of the few written addressing the task of OT&E

analysis, Mr. Giadrosich concentrates on the standard statistical methods currently in use

by the OT&E community. Appendix A provides a brief review of those methods, broken

into three broad categories: Statistical Analysis Tools, Statistical Model Building

Techniques, and Modeling & Simulation.

8



1.1.2.1 CURRENT TOOL INADEQUACY

After their initial analysis of all of the statistical and analytical methods used in OT&E,

the National Research Council affirmed those factors described in Section 1.1.1, when

they listed the four aspects of operational testing contributing to its difficulty and

complexity [68]:

The operational testing paradigm often does not lead to a pass/fail
decision. Instead, testing can involve redesign, iteration on concepts, or
changes in subcomponents. This aspect especially characterizes the
operational testing of complex systems for which no competing capability
exists. The statistical methodology appropriate for one-at-a-time pass/fail
decisions is inappropriate for sequential problems; thus there is a need
for more proper sequential methods that will increase the information
derived from tests of this type.

" Operational testing involves realistic engagements in which circumstances
can be controlled only in the broadest sense. Human intervention,
training, and operator skill level often defy control, and can play as
important a role in the performance outcome as the system hardware and
software.

* Operational tests are often expensive. With increasingly constrained
budgets, there is enormous pressure to limit the amount of operational
testing solely because of cost considerations. Experiments with sparse
data cannot produce information with the associated levels of statistical
uncertainty and risk traditionally used to support decision-making.

" When attempted, the incorporation of additional sources of relevant data
-- before, during, and after operational testing -- in the evaluation of
complex systems poses methodological and organizational challenges.
Methodological challenges arise from the difficulty of combining
information from disparate sources using standard evaluation
techniques. Such sources include training data on operators involved in
field tests and observational data on in-use situations when they present
themselves. Organizational challenges can arise where there is
disagreement about the validity of certain types of information or when
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attempting to gather information in settings (e.g., combat) in which the
primary objective is not data collection.

The different focus of OT&E and the inadequacy of the current set of tools, drives the

need for a development of a new set of tools to meet the analysis challenge.

1.1.3 DIFFERENT TOOLS

As discussed in Sections 1.1.1 and 1.1.2, different analysis tasks require different analysis

tools to adequately perform OT&E. However, the current OT&E analyst's toolbox is

filled with the same statistical methods as the DT&E analyst's. These statistical methods

are inadequate for the challenges faced by the OT&E community. While statistical

methods provide a mechanism for describing and summarizing the collected data, they

provide no means for aggregating or synthesizing the information to higher information-

content levels or for quantifying concepts that cannot be measured numerically.

Additionally, statistical methods such as Analysis of Variance (ANOVA) or Hypothesis

Testing, depend on tight controls on the test variables and adequately-sized data samples

[6] that are not possible in the dynamic environment of OT&E. A systematic means for

analyzing the results of OT&E, considering the challenges described in Sections 1.1.1 and

1.1.2 is desperately needed. This research focuses on the development of a hierarchical

analysis and decision methodology based upon intelligent techniques, which will allow

information gathered at the functional performance level to be aggregated to a higher

information-content level where it is more meaningful to the end users of the information.

These intelligent techniques also provide a flexible mechanism for dealing with the

dynamic/uncertain OT&E environment.

It should be noted at this point, that although the decision-making dilemma facing

the OT&E community has spawned this research, and that the testbed case examined

throughout is a specific application to the military OT&E community, the work described
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here can be applied universally. In a general decision-making setting, decision-makers

want information at a level where it is meaningful to the decision being made. The

methodology developed here can be used by any decision-maker who has low-level data

and wishes to base high-level decisions on the information it contains.

1.2 THE INTELLIGENT HIERARCHICAL DECISION
ARCHITECTURE

The development of the Intelligent Hierarchical Decision Architecture (IHDA),

illustrated in Figure 1, to address the OT&E analysis challenges discussed in Section 1.1,

is the focus of this research. In addition to the development of the hierarchical structure,

several new tools and methods were developed which advance the state of the art in both

the areas of systems analysis and fuzzy logic. These advances are described as each

portion of the proposed structure is discussed in more detail. Each function of the

Intelligent Hierarchical Decision Architecture will be briefly described here to present an

overview of its operation. Further detail on each portion of the architecture's

development and use will be described in the following chapters.

1.2.1 SYSTEM-UNDER-TEST PERFORMANCE MEASURES

Before proceeding to a discussion of the components of the Intelligent Hierarchical

Decision Architecture, two definitions are required. Measures of the system-under-test's

performance at two information-content levels will be used in the progression through the

aggregation/synthesizing process of the Intelligent Hierarchical Decision Architecture.

These measures will be given names to associate them with their level of information-

content. First, a Measure of Functional Performance (MOFP) is a measure of the

system's performance at the technical performance level. The MOFP is the lowest level

11



of information derived from a testing effort, and represents the starting point for the

IHDA framework. Typically, the MOFP will be a measure that can be derived directly

from test measurements in the field or in a laboratory. The MOFP characterizes the

system performance at a technical level, but does not provide very much insight for the

decision-maker on the system's overall worth. Going back to the car stereo system

evaluation example of Section 1.1.1, one of the MOFPs used to measure the technical

performance might be the maximum dynamic range of the speakers.

The information-content level above the MOFP is the Measure of Task

Accomplishment (MOTA). This is a measure of how well the operational task is being

accomplished by the system-under-test. Just as accomplishing one task requires the

completion of several sub-tasks (e.g., the task of making a sandwich requires the subtasks

of taking out the bread, spreading the mayonnaise,....), the MOTA is composed of several

MOFPs. System performance at the MOTA-level usually cannot be directly measured by

a testing activity; thus, information on the MOTA must be derived from an aggregation of

the underlying MOFPs. The MOTA gives the decision-maker an insight into how well

the required tasks are accomplished by the system-under-test. Continuing the car stereo

example, a MOTA might be the system's ability to adequately reproduce FM quality

sound from the FM signals transmitted by the radio station while the car travels in all

types of terrain that it may encounter during operational use.

1.2.2 INTELLIGENT HIERARCHICAL DECISION ARCHITECTURE OVERVIEW

The Intelligent Hierarchical Decision Architecture provides the mechanism to aggregate

and synthesize information gathered on low-level technical system performance (at the

MOFP-level) to provide information on the system-under-test's operational task

accomplishment capabilities (at the MOTA-level). Additionally, the Intelligent

Hierarchical Decision Architecture provides a mechanism through which other factors

12



that could not be controlled or included in the testing can be considered in the system

performance outcome. With this information, the decision-maker can determine a

system's worth in meeting higher level objectives and goals.

[ Generates Optimal Composite Fuzzy
Raw Test Data- Clustering Membership Function (COMMFFY)

Method from Basic Membership Function
and Raw Test Data

MOFP - Level Membership Functiona

Fuzzy Transforms Performance AtAssociative MOFP - Level To MOTA - LevelMemory

MOTA -Level Membership Function4

Fuzzy Adjusts MOTA - Level Performance
Cognitive Due To Considerations Of

Map Untested/Uncontrollable Factors

MOTA - Level M.F. Performance
Including Outside Factors 4

Aggregation Upper and Lower Probabilistic System
Method Performance Bound

Figure 1 The Intelligent Hierarchical Decision Architecture (IHDA)

Although Figure 1 suggests a linear structure, the Intelligent Hierarchical

Decision Architecture is actually more of a tree or funnel structure. It proceeds from

multiple observations of a single MOFP at its beginning stages and ends with a single

bounded performance measurement at the operational task level. A brief overview of The

Intelligent Hierarchical Decision Architecture's functional blocks is given below. The

following chapters provide descriptions of each block in greater detail.
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Test data gathered either on the test range or in a laboratory enter the Intelligent

Hierarchical Decision Architecture as raw input. These data have been pre-processed to

provide measures of the system's technical performance at the functional-performance

level. The Clustering Method function serves to form a Composite Fuzzy Membership

Function (COMMFFY) based upon pre-defined Basic Membership Functions (BMFs)

and the observed test data for each Measure of Functional Performance (MOFP). Each

MOFP, will be processed separately, with a MOFP-level COMMFFY developed for each.

Once the MOFP's COMMFFY has been formed, it will be used to stimulate the Fuzzy

Associative Memory (FAM). The FAM serves to aggregate the MOFP-level

performance, providing information at the MOTA-level. The output of the FAM will

also be a COMMFFY, now at the MOTA-level, which indicates the system's

performance at the operational task level based solely upon the information gathered at

the MOFP-level. Since every factor that could potentially affect system performance is

not included in the testing effort, the Fuzzy Cognitive Map (FCM) function will allow

the measured MOTA-level performance to be adjusted to take into consideration factors

that could not be tested or controlled during the testing phase. The Clustering, FAM, and

FCM phases are accomplished for each logical division of the system performance. The

Aggregation Method performs the aggregation of the system performance across these

logical boundaries. The aggregation will be performed using the Dempster's Rule of

Combination from the Dempster-Shafer Theory of Evidential Reasoning. The

COMMFFYs from the first three phases of the Intelligent Hierarchical Decision

Architecture will be used to form basic probability assignments through the use of alpha-

cut sets. The bpa's are then combined to form belief intervals, which is the final piece of

information provided to the decision-maker.
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1.3 TESTBED CASE DESCRIPTION

The Intelligent Hierarchical Decision Architecture, once developed, will be applied to

data from an OT&E program to illustrate the methodology. The best illustrations of
2OT&E programs can be taken from the Department of Defense (DoD). An actual DoD

program's data cannot be directly used in this work because of security classification and

sensitivity issues associated with data gathered on system performance against enemy

threat systems. However, the data used for the testbed case is based upon measures used,

and data gathered, from an actual Air Force program. The type of program selected for

the testbed case is an Electronic Combat (EC) program because of the poor track record

within all the services' Operational Test Agencies on performing OT&E on this type of

programs. The Navy's Advanced Self Protection Jammer (ASPJ) and the Air Force's F-

15 Tactical Electronic Warfare System (TEWS) programs are but two recent examples of

tumultuous test and evaluation activities of EC programs [7]. Additionally, a new EC

system is currently under development for use on the B-1B bomber. Once this

methodology is developed, it can be used in the OT&E analysis of the B-1B Electronic

Countermeasures System to help the Air Force avoid the pitfalls experienced by the ASPJ

and TEWS programs.

The following sections provide information on the case study: the structure of the

evaluation framework, the measures of performance used to judge the system-under-test,

and a sample of raw data to be used in the analysis. The complete set of raw data

measurements can be found in Appendix F.

2 The DoD has the most structured OT&E programs due to the DOD's inability, in most cases, to get any

informal feedback on system performance of the systems they are acquiring. The basis of the testbed case is
a Department of the Air Force test program, conducted by the Air Force Operational Test and Evaluation
Center.
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1.3.1 STRATEGY-TO-TASK EVALUATION FRAMEWORK

Since their creation in 1974, the services' Operational Test Agencies have conducted

OT&E on systems being acquired for their services using available analysis tools. The

information discovered during the conduct of OT&E is presented to high-level DoD

decision-makers who are charged with making system procurement decisions: the

defense acquisition decision-makers. Because of the lack of adequate analysis tools, the

information presented as a result of OT&E to-date, has essentially been a summary of

low-level test results. Current analysis methods did not provide a mechanism to

aggregate or synthesize the test results into more meaningful information for the decision-

maker. A growing dissatisfaction with the information that was being provided, coupled

with a landmark report written by the RAND Corporation created a major upheaval in the

conduct of OT&E in 1992.

The acquisition decision-makers were being presented with "nuts and bolts" type

of information and being expected to piece the information together themselves to

determine the system's worth. OT&E had become simply a replication of DT&E in an

operational environment. Each individual aspect of the system's performance was being

examined for its compliance with the user requirement. OT&E results were being

presented as a series of pass/fail determinations against individual user requirements, with

no effort by the testers to provide information on how these performance measures

combined to indicate an adequate or inadequate system. The decision-makers were

getting no information on the system's impact on the overall mission or how the system

was going to contribute to the services' missions. They were left to determine system

contributions to overall goals and objectives on their own from the pieces of test data

presented to them.

Simultaneously, Lieutenant General Glenn Kent, at RAND, published a report

suggesting that in an era of diminishing defense budgets and uncertain threat

environments, it is extremely important to have a link between national security
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objectives and tasks that a system should be able to perform in order to contribute to

those objectives [8]. This link would allow the acquisition decision-makers to understand

where each system that was being acquired fit into the national security strategy picture.

Thus, their decisions on how to allocate precious resources to the acquisition programs

could be based upon national security needs. The report suggested a hierarchy of

objectives from national security objectives through subordinate objectives and finally to

accomplishing specific military tasks, the fundamental building blocks of military

capability.

The hierarchical structure suggested by General Kent is illustrated in Figure 2. In

the figure it can be seen that once the desired goals are defined, then objectives at the

various levels are defined in order to meet those goals. Once the objectives at the

national security, national military, and regional levels have been defined, tasks that need

to be accomplished in order to meet those objectives can be delineated. Finally, once the

specific tasks that need to be accomplished have been defined, functions that a system

needs to perform to accomplish those tasks can be determined. The concept was, that

once the hierarchical structure has been defined, information on a system's performance

can be gathered at the functional performance level during the testing phase. This

functional performance data can then be used to provide information to the decision-

maker by flowing the information upward through the hierarchy.
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Figure 2 Hierarchy of Security Objectives: Precursor to Strategy-to-Task

This report, coupled with the already present dissatisfaction with the information

being provided by the Operational Test Agencies, spawned the acquisition decision-

makers to demand information from the testers on system performance at the operational

task level. With information on the system's task-accomplishment capabilities, the

decision-makers would then easily be able to determine how procuring the system would

contribute to national security objectives. The Operational Test Agencies embraced this

concept of a hierarchical linkage and termed the philosophy the Strategy-to-Task

Evaluation Framework. The implementation of this evaluation framework in test

programs began in 1992; however, to date it has not been successfully accomplished.

The development of the hierarchical structure of national security objectives flowing

down to operational tasks which subsequently flow down to system performance
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requirements has been accomplished successfully on a number of programs. However, no

OT&E program has been able to develop a method through which the test data and

information gathered at the functional performance level can be aggregated or

synthesized to provide information at the operational task level. The OT&E community

is currently working with statistical and analytical tools that only allow a summary of the

phenomena seen, with no systematic method to combine the information to take

functional performance level information and provide task accomplishment level

information to help the decision-maker determine if the system-under-test is worth

buying.

The testbed case, termed Jammer-X, will be evaluated using this Strategy-to-Task

Evaluation Framework. Under this framework the low-level measures of functional

performance are used to guide the data collection in the field. These measurements are

then aggregated/synthesized using the Intelligent Hierarchical Decision Architecture to

determine operational task-level performance of the system. This is the information level

that is ultimately reported to the acquisition decision-makers. The decision-maker would

then use the information developed within the Strategy-to-Task Framework to determine

how the operational task accomplishment, determined as a result of analysis with the

Intelligent Hierarchical Decision Architecture, contributes to higher level objectives and

goals. For the testbed case, six MOFPs will be aggregated to a single MOTA. The

Measure of Task Accomplishment that will be demonstrated is "Percentage Reduction in

Probability of Kill." Each of the MOFPs described in Section 1.3.1.1 contribute to the

determination of that MOTA. In the overall Jammer-X Strategy-to-Task Evaluation

Framework, there would be other operational tasks that would contribute to mission

accomplishment. However, for the testbed case, only the portion of the overall hierarchy

shown in Figure 3 will be used to demonstrate the Intelligent Hierarchical Decision

Architecture methodology.
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Figure 3 Testbed Case Evaluation Framework

1.3.1.1 TESTBED CASE MEASURES OF FUNCTIONAL PERFORMANCE

The lowest-level in the Strategy-to-Task framework are the Measures of Functional

Performance (MOFPs) which are used to guide the data collection activities during the

OT&E. The MOFPs that are used in the testing of Jammer-X are described below [9],
along with the evaluation criteria that would make each of the individual MOFPs a

success.

MOFP 1. Reductio n Hits (RIH). RIH is defined as a measure of the (percentage)

reduction in the number of missile or bullet hits per pass in dry (no jamming) versus wet
(jamming) conditions. Evaluation Criteria: Greater than or equal to 50%.
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Method: Missile fly-out models associated with each threat simulation are used to

generate shot miss distance information. If the miss distance is less than one-half the

maximum length of the aircraft plus the lethal warhead radius, the shot is considered a

hit.

%RIH = h its / pass(dry) - hits / pass(wet)]l 0 % (X11)

h hits / pass(dry) I

MOFP 2. Reduction in Guidance (RIG). Percent reduction in command guidance.

Evaluation Criteria: Greater than or equal to 50%.

Method: Missile seeker guidance signals are observed for periods of interruption

(nonguidance). Comparisons are made between wet and dry runs to determine if

electronic countermeasures caused significant amounts of degradation. Guidance signals

are only observed during time periods when the missile seeker is attempting to track a

target. Percent reduction in guidance is calculated as

% RIG = 'nonguidance / pass(wet) - nonguidance / pass(dry) x10 0 % (1-2)
nonguidance / pass(dry) I

MOFP 3. Increase in Break Locks (IBL). Percentage increase in number of break locks.

Evaluation Criteria: Greater than or equal to 50%.
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Method: To calculate the percentage increase in break locks, the number of break locks

is counted in both wet and dry conditions. The percentage change caused by the jammer

for each pass is determined as

%IBL = # BL / pass(wet)-# BL / pass(dry) xl00% (1-3)
# BL / pass(dry)

MOFP 4. Track-on-Jam (TOJ). Percentage Track on Jam. Evaluation Criteria: Greater

than or equal to 50%.

Method: To calculate the percentage TOJ, the TOJ signal in the seeker is instrumented

and the signal recorded digitally or on a strip chart recorder. During periods of track,

missile seekers are monitored to determine if TOJ status is reported. The percentage of

TOJ is determined as

%TOJ - TotalTOJTime 1 00% (14)
% TotalTrackTime iWET

MOFP 5. Increase in Tracking Errors (ITE). Percentage increase in the tracking error

above a threshold. Evaluation criteria: Greater than or equal to 50%.

Method: Errors in threat system tracking are determined by comparing time-space-

position-information (TSPI) target location generated by the test range instrumentation

with threat target location. The percentage increase in the dry and wet tracking error is

calculated as
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TrcTimeGTrhreshold 1ET [ [TrackTimeGThreshold1

L TotalTrackTime I TotalTrackTime DRY X1..
TrackTimeGThreshold []( 1-5 )

TotalTrackTime ]DRY

MOFP 6. Response Time. Difference in time between when a threat engages the aircraft

and when the jammer responds. Evaluation Criteria: Less than or equal to 10 seconds.

Method: The assessment requires determining the earliest response against a threat. To

calculate the response time, spectrum analyzers are attached to the jammer input and

output during testing. Center frequencies and band passes were set to show only the

threats of interest. The elapsed time between when a signal is observed at the input and

when the response is observed is measured by a stop watch and recorded.

1.3.1.2 TESTBED CASE MOFP DATA

Table 1 shows one sample of the data that will be used for the analysis of Jammer-X's

capabilities, with the complete data set contained in Appendix F. The raw data collected

on the test range or in the laboratory setting are pre-processed in accordance with the

equations shown in Section 1.3.1.1, to give the MOFP-level values shown here, arranged

in each table by MOFP, threat system, and test run number. It should be noted from these

tables that each MOFP is evaluated against four separate threat systems, and a total of ten

observations is made for each MOFP/threat system combination. As mentioned

previously, current OT&E analysis methods would provide a statistical mean for each of

the MOFP/threat combinations (i.e., 24 separate statistical mean values) to the decision-

maker, and require that he determine the system's worth from that information. The
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result of the Intelligent Hierarchical Decision Architecture methodology will provide a

single performance bound across all the MOFPs and all the threat systems, with the

additional consideration of other factors which could not be tested. The decision-maker's

job is substantially easier when presented with that type of information versus that which

he is currently provided.

The values given here and in the Appendix F tables were drawn using the uniform

random number generator contained within MATLAB® because actual system

performance values would reveal classified information about defense systems and,

therefore, cannot be used in a research effort such as this. The data has been chosen from

those generated by the MATLAB® rand(mn) command such that the performance

against each of the threats can be easily inferred into much better than the user

requirement, just barely better than the user requirement, just barely worse than the user

requirement, and both better and worse than the user requirement. Threat A is represents

data that are much better than the user requirement for each measure, the performance

against Threat B is just barely better than the user requirement for each measure, the

performance against Threat C is just barely worse than the user requirement for each

measure, and the performance against Threat D is scattered throughout the range of

better and worse than the user requirement for each measure. These choices of values

will allow the performance of the Intelligent Hierarchical Decision Architecture to be

easily checked to ensure it is drawing valid inferences.
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Table 1 MOFP #1, Reduction in Hits Performance for Jammer-X

Percent Reduction in Hits
Run Number Threat A Threat B Threat C Threat D

1 92.88 51.67 44.76 71.43
2 75.22 52.11 30.00 32.59
3 100.00 57.28 39.15 80.16
4 81.68 64.62 40.34 71.68
5 85.14 61.54 41.67 60.34
6 82.80 63.94 32.78 61.54
7 87.45 54.62 32.58 49.15
8 81.36 59.05 33.33 50.88
9 79.21 50.91 35.00 41.36

10 87.63 62.80 32.50 37.63

1.4 DISSERTATION ORGANIZATION

With this introduction, the problem this research aims to solve has been highlighted: the

development of an intelligent, hierarchical decision architecture to aggregate low-level

information in order to provide high-level information. The analysis method will provide

a systematic means of dealing with the decision-making dilemma faced by decision-

makers in the information age. The remainder of the dissertation is organized as follows.

Chapter Two is an overview of the relevant fuzzy set and fuzzy logic theories

required to understand the work.

Chapter Three is a description of the Clustering Methodology, the first step in the

Intelligent Hierarchical Decision Architecture. The Clustering Method takes the test data

at the functional performance level and forms it into a Composite Fuzzy Membership

Function (COMMFFY) -- a fuzzy distribution -- to be used in the aggregation/synthesis

stages that follow.
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Chapter Four describes the Fuzzy Associative Memory of the Intelligent

Hierarchical Decision Architecture. The Fuzzy Associative Memory provides the

transition from the functional-performance level to the task-accomplishment level. It

takes the functional-performance level COMMFFY as input and aggregates across all the

Measures of Functional Performance to yield a COMMFFY at the task-accomplishment

level.

Chapter Five outlines the theory and use of a Fuzzy Cognitive Map within the

Intelligent Hierarchical Decision Architecture. A Fuzzy Cognitive Map provides a

means for quantifying and manipulating expert-provided cause-and-effect relationships.

After a review of the relevant FCM theory, the FCM's use within the Intelligent

Hierarchical Decision Architecture is described. The FCM adjusts the task-

accomplishment level COMMFFY generated from the previous stages for factors that

could not be controlled or included in the testing effort.

Chapter Six describes the Intelligent Hierarchical Decision Architecture's

Aggregation Methodology, which aggregates the information generated from the first

three stages across the logical divisions of the system performance. The aggregation

method is based upon the Dempster' s Rule of Combination taken from the Dempster-

Shafer Theory of Evidential Reasoning.

Finally, Chapter Seven concludes the discussion by illustrating the Intelligent

Hierarchical Decision Architecture's merit with a fuzzy entropy measure of the

information content at each stage of its processing and through a comparison with

currently available analysis methods. Also in the final chapter, the contributions of the

work are summarized, and suggestions for future research efforts that would extend this

work are proposed.

Appendices provide additional background information for the reader on Current

OT&E Analysis Methods (Appendix A), Fuzzy Sets and Fuzzy Logic (Appendix B),

Fuzzy Cognitive Maps (Appendix C), and Dempster-Shafer Theory (Appendix D).

Finally, Appendix E provides the source code which implements the first three stages of
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the Intelligent Hierarchical Decision Architecture and Appendix F contains the complete

details of the application of the methodology to the testbed case.
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CHAPTER TWO

FUZZY LOGIC

2. FUZZY LOGIC

In Lofti Zadeh's 1973 "Outline of a New Approach to the Analysis of Complex Systems

and Decision Processes," he stated [10]

... it is this fuzzy, and as yet not well-understood, logic that plays a
basic role in what may well be one of the most important facts of
human thinking, namely, the ability to summarize information -- to
extract from the collections of masses of data impinging upon the
human brain those and only those subcollections which are relevant to
the performance of the task at hand.

This is exactly the decision-making problem being addressed with this work -- how to

determine the factors that are important to a system's ability to perform its operational

tasks, when faced with masses of system performance data.

The classes of objects encountered in the physical world do not fit into clean, crisp

classes or have precisely defined criteria for membership. Dr. Zadeh developed fuzzy

logic in 1965 as a means of dealing with the analysis of complex systems -- providing a

mechanism through which systems could be dealt with realistically without making a

"fetish of precision, rigor, and mathematical formalism, and which employ[s] instead a
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methodological framework which is tolerant of imprecision and partial truths." In the

past, Operational Test and Evaluation analysis has relied on statistical methods to

summarize the aspects of the system performance demonstrated during the testing phase.

It has lacked a formal method that allows the human's perception of system performance

to be melded with the measured system performance to form an overall picture of the

ability of the system to perform its operational mission. Pilots who fly a new plane

should be able to express their opinions in such terms as "it flies too slow" or it "turns too

wide" without having to give a mathematically precise formula for the system

performance, and this information should be able to be incorporated into the evaluation

process. Additionally, system performance in a dynamic environment should not be

graded by arbitrary or artificial lines marking good and bad performance -- there should

be a mechanism for gradual transitions from good to bad performance. Finally, OT&E

analysis lacks a mechanism through which system performance data can be summarized,

and through which the relevant pieces can be separated from the masses of data to flow

forward to aid in the decision-making process. Fuzzy logic provides these needed

mechanisms.

Appendix B describes the basics of fuzzy set and fuzzy logic theory. In it, how

fuzzy sets and crisp sets differ is discussed; the concepts of fuzzy membership functions

and fuzzy set operations are defined; linguistic variables and their modification through

hedges, connection and negation operators are described; fuzzy inference mechanisms

and defuzzification schemes are described; fuzzy logic's use in control applications are

briefly highlighted. This information is provided for the reader unfamiliar with fuzzy set

and fuzzy logic concepts. This chapter describes properties and examples of fuzzy

similarity, distance, and entropy measures, which provide an important foundation for

much of this research.
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2.1 FUZZY MEASURES

Various measures have been proposed to measure the information content of fuzzy sets.

Here, two of those concepts are briefly discussed: fuzzy entropy and fuzzy similarity

measures. The entropy measures have been suggested to define the amount of uncertainty

contained within a fuzzy set. By decreasing the entropy the uncertainty associated with

the set also decreases. Similarity measures have formed the basis of comparisons made

between fuzzy sets. They are most applicable to tasks such as clustering and

classification. The current uses and definitions of these concepts, although diverse, do

not completely suit the Intelligent Hierarchical Decision Architecture's purposes.

Therefore, as this work progresses, entropy and similarity measures will be developed to

meet the needs established by the work.

2.1.1 Fuzzy SIMILARITY MEASURES

A distance measure of two fuzzy sets measures the difference between the two sets [11].

The similarity measure of two fuzzy sets, on the other hand, measures the similarity

between the two sets. Distance and similarity measures are dual concepts.

Below the definitions of these concepts are provided, such that the measures

derived in this work can be tested to ensure that they satisfy the axiomatic properties

given here. In these properties, the following definitions are used:

R' = [0, +oo )

X is the universal set
(2-1)

4X) is the class of all fuzzy sets of X

/ (X) is the class of all crisp sets of X
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Thus, the definition of a fuzzy distance measure is [11]:

Definition: A real function d: Y72 -4 R' is called a distance measure on c7

if d satisfies the following properties:

(DPi1) d(A, B) = d(B, A), VA, B c Y

(DP2) d(A, A)=O0, VAc .Y;

(DP3) d(D, DC) = max A, Be , d(A, B), VD (= iffX);

(DP4) VA, B, Ce EY, if A cB cC,then d(A, B) !d(A, C) and d(B, C)

d(A, C).

An example of a distance measure satisfying these properties is:

dpAB)(~uI )- xIY VA,BE-= (2-2)

The definition of a fuzzy similarity measure is [11]

Definition: A real function s: 72-- R+ is called a similarity measure on

Y if s satisfies the following properties:

(SPi) s(A, B) = s(B, A), VA, B E .Y;

(SP2) s(D, D') = 0, VD E- 4,'X) ;

(SP3) s(C, C) =max A, B ,s(A, B), VCe Y;

(SP4) VA, B, Ce Y ., if A cB cC,then s(A, B) s(A, C) and s(B, C) >

s(A, C).
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An example of a similarity measure satisfying these properties is:

1

sp(A,B) = 1 -(f IPA(X) -- (X) IPP VA,BcZ (2-3)
0

2.1.2 Fuzzy ENTROPY MEASURES

Entropy is a measure that expresses the average difficulty/ambiguity in making a decision

as to whether an element belongs to a set or not [12]. It can be interpreted as the

uncertainty associated with a fuzzy event. Therefore, in information theory an

appropriate metric in determining if the information content is moving in the correct

direction, could be the fuzzy entropy. As with the fuzzy distance and similarity measures

described in Section 2.1. 1, various fuzzy entropy measures have been proposed. To be an

entropy measure, certain properties should be satisfied. These properties are given in the

definition below. The properties of entropy given below require an additional definition,

in addition to those given in (2-1).

is the fuzzy set of X for which 1 (x)= (2-4)
L2L2 2

Using the definitions given in both (2-4) and (2-1), the definition of fuzzy entropy is [11]:
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Definition: A real function e: .Y -> R+ is called an entropy measure on

Y7 if e satisfies the following properties:

(EPi1) e(D)=O0, VDe 4= fX);

(EP2) e( = max A, ,e(A);

(EP3) VA, Be Y=- e(A) 2!e(B) , if

PIB(X) ! YA(W when YLAWx - and IB (X)! MAAx) when MA (X)! -
2 2

(EP4) e(AC) = e(A) , VA c= 7;

An example of an entropy measure satisfying these properties is:

I p

e(A)1I-(f IgA WxJtiA x) X) "Y VA e (2-5)
0
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CHAPTER THREE

CLUSTERING METHODOLOGY

3. CLUSTERING METHODOLOGY

The first step in the Intelligent Hierarchical Decision Architecture involves taking the

observed test data and creating a Composite Fuzzy Membership Function (COMMFFY)

from it. This COMMFFY represents, in terms of relevant fuzzy sets for the given

variable, the system performance at the functional-performance level observed during the

testing effort. This composite membership function will be used in further stages of the

hierarchy's processing to assist in high-level decision-making. Ultimately, the final

decisions on overall system performance will be based upon the entire spectrum of low-

level system performance observed during the testing phase, described by the

COMMFFYs developed in this stage.

This chapter describes this first phase of the Intelligent Hierarchical Decision

Architecture, labeled the Clustering Methodology. The label for this portion of the

hierarchy was chosen because the clustering of the raw test data into like groupings is

similar to the clustering methodologies used in the fuzzy literature. However, typical

clustering methods described in the fuzzy literature do not completely accomplish what

needs to be done at this stage of the Intelligent Hierarchical Decision Architecture.

Therefore, a new clustering methodology, that uses current methods as a starting point,
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has been developed. The discussion here has been broken into four separate topics: the

development of the Basic Membership Functions that serve as the foundation for the

COMMFFY building, the COMMFFY Compositional Methods developed to compose a

COMMFFY from raw test data, the Fuzzy-Statistical Similarity Measures derived to

assess the compositional methods' performance, and the Optimization Method used to

determine the optimal COMMFFY for each data set.

3.1 FUZZY CLUSTERING TECHNIQUES

Fuzzy clustering techniques examine the elements of some universal set and group them

according to similarity [13]. Using these techniques, each cluster becomes a fuzzy set in

which the grades of membership represent the similarity between elements within the

cluster. The membership function values for the points or feature vectors within each

cluster are typically defined by an inverse distance measurement from the cluster center to

the point or feature vector, as [14]

1(3-1)

P zd(Xj,V 1)(31
1-,d(Xj,V)
k=1

where ij = membership value of point Xj in cluster Vi

K = total number of clusters

d(X, Vi ) = distance from sample X to the centroid of cluster V

The most commonly used clustering algorithm is thefuzzy k-means or fuzzy c-

means, both by Bezdek [15]. Both algorithms require the pre-specification of the total

number of clusters (represented by either the value of k in the fuzzy k-means or c in the
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fuzzy c-means) in the domain. Thefuzzy k-means is based upon minimization of the

objective function with respect to U, a fuzzy K-partition of the data set and V, a set of K

prototypes

N K
J (V, V)= __(ij)q d(Xj, Vi) ( 3-2 )

j=I i=1

where q = any real number greater than 1

N = number of data points

and the rest are as defined in ( 3-1 ).

An iterative optimization is carried out by first choosing initial guesses at the

centroid prototypes, then iteratively (1) computing the degree of membership of all points

(or feature vectors) to the chosen centroids and (2) computing new centroids based upon

the calculated degrees of membership, until the termination criterion in the optimization

is reached. The difference between thefuzzy k-means and fuzzy c-means algorithms are

the functions used to calculate the degree of membership value within the iterative

optimization. For the fuzzy k-means

k1d(XV) (3-3)

and for the fuzzy c-means [16]

Xk - Z 1
x -z1  (3-4)
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where zi = mean value of the fuzzy clusters (fuzzy mean) and is calculated as

n
nI -X k (Ilij )

q

= k

Y1 (b ij )q (3-5)
k=1

Both the fuzzy c-means and fuzzy k-means methods satisfy the following conditions

n (3-6)j/.tj=l, k=l,2,....n(36

c=1

n

O .tp<n, c=1,2,....c (3-7)
k=1

The fuzzy c-means and fuzzy k-means clustering methods, although the most

widely used, have been criticized for their inability to generate membership function

values that are independent measures of the membership within a cluster. The

membership function values, due to the "conservation of total membership law" given in

( 3-6 ), are spread across all the available classes -- making the values dependent on the

number of clusters present.

To address this concern, a Possibilistic Clustering Method is suggested in [17]

that defines a possibility distribution function that depends only on the distance from each

point to each cluster center, as
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1
M tij 2.-

+ i(3-8)
S77i)

where dij = distance from sample Xj to the centroid of cluster Vi

77i = a parameter that specifies the distance at which the

membership function equals 0.5; essentially the 3dB point of the cluster

m = a weighting exponent called the fuzzifier

This function satisfies the conditions

n

foralli (3-9)
j=1

max ju > 0 for all (3-10)

yet is not constrained with the "conservation law" given in ( 3-6 ). Therefore, the

membership function values in a cluster are not dependent on the number of other

clusters. Additionally, this formulation ensures, with condition ( 3-10 ), that the entire

domain of interest will be covered with fuzzy classes.

The problem with all of the clustering methods discussed thus far, is that the

number of clusters must be specified before the clustering procedure begins. In some

instances this is not a desirable attribute, for it may be very difficult to achieve a priori.

To solve this, Gath and Gena proposed the Unsupervised Fuzzy Partition-Optimal

Number of Clusters (UFP-ONC) clustering method [18]. In their method, they suggest an

unsupervised tracking of cluster prototypes through which they begin with one cluster at

the mean of the data distribution, then continuously add cluster prototypes until a pre-

determined maximum number of clusters is reached. Three performance measures are
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proposed to compare different clustering schemes. The three measures are the Fuzzy

Hypervolume, a measure of the size of the cluster, which is to be minimized, and the

Average Partition Density and the Partition Density, measures of the number of members

within each cluster, which is to be maximized.

For the Intelligent Hierarchical Decision Architecture, a different sort of

clustering method is required. Rather than developing clusters with each element

carrying a degree of membership representing its compatibility within the cluster, a

clustering method that will take all the raw data measurements for a given test variable

and form a representative fuzzy distribution is needed. These fuzzy distributions, named

Composite Fuzzy Membership Functions (COMMFFYs), will represent, in fuzzy terms,

the distribution of test observations seen for an individual test measurement. The

COMMFFYs, once formed, will be used as input to further stages in the Intelligent

Hierarchical Decision Architecture, such that the high-level decisions derived as an

output of the Intelligent Hierarchical Decision Architecture are firmly based upon the

low-level test measurements seen during the testing phase.

The following sections describe the compositional methods used to generate the

COMMFFYs, several similarity measures used to optimize the COMMFFY generation

process, and the results from the COMMFFY generation of the testbed data.

3.2 THE IHDA CLUSTERING METHODOLOGY

The methods proposed here will yield a Composite Fuzzy Membership Function from the

test data collected in the testing phase at the functional performance level. That

functional performance level COMMFFY is then used in subsequent processing by the

Intelligent Hierarchical Decision Architecture.
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3.2.1 BASIC MEMBERSHIP FUNCTION DERIVATION

Just as with any fuzzy modeling approach, the first step required in generating a

Composite Fuzzy Membership Function is to divide the universe of discourse into

relevant fuzzy sets. Each of these fuzzy sets will be given a linguistic tag and a region of

support within the universe of discourse. Using these fuzzy sets, termed Basic

Membership Functions (BMFs), as the foundation, the COMMFFY is derived from the

test data. Depending on the amount of background information/data that is available for a

given application, one of two approaches to defining the BMFs can be adopted.

If enough data exist to characterize the input space, a fuzzy clustering method will

be employed to define the BMFs. Unless the application dictates the number of clusters

that should be used to make up the BMF set (in which case a strictfuzzy k-means orfuzzy

c-means clustering method should be employed), the Unsupervised Fuzzy Partition-

Optimal Number of Clusters (UFP-ONC) method will be employed to define the clusters

that will comprise the BMF set. The UFP-ONC is a two-stage clustering method. In the

first stage, a variation of the fuzzy k-means algorithm is used, however, no initial

conditions on the number of clusters or centroid location(s) need be made. In the second

stage, the cluster prototypes generated in the first stage are used in a second clustering

algorithm to optimize the partitioning. These two stages are repeated for increasing

numbers of clusters, until the maximum allowed is reached. The final determination of

the optimal clustering is made by examining the values of three performance measures

that will be used to optimize the choice of clusterings [ 18].

Specifically, the development of the BMFs, given that enough data exist to use a

clustering method, will proceed as follows.
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(1) Compute primary centroids, Vi (prototypes) using

(a) Compute the mean and standard deviation of the whole data set

(b) Choose the initial cluster prototype at the data set mean value, subsequent

cluster prototypes in further iterations will be placed one standard deviation from

the current prototypes

(2) Compute the degree of membership of all points in all clusters, as

I ]/Y q-1)

d(Xj,V)

k=1 d(Xj'gk)]

(3) Compute new centroid values

N
Y (Y~ij )q xj

// j=l

1 N (3-12)
1(,j)q
j=1

(4) Update degree of membership uij to Ai, using ( 3-11)

(5) Iterate steps (3) and (4) until stopping criteria is reached

max[/.i, - Aij ] <C (3-13)
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(6) Compute performance measures. The performance measure of Fuzzy Hypervolume

is defined by [18]

K 1/2

FHV = [det(F)] (3-14)
i=1

where Fi is the fuzzy covariance matrix of the ith cluster, given by

N

I h(i Yj)(Xj - Vi)(Xj - V) T

F - j=1 N (3-15)
h(ilXj)

j=1

where h( i I Xj ) is the posterior probability (the probability of selecting the ith cluster

given the jth point or feature vector), given by

h(ilXj)= K d(X, (3-16)

I 1d(Xj, VK)

The performance measure for Average Partition Density is calculated as [18]

1 K S (3-17)
DPA = - Y, - ]112

K k=1 [det(F)]"

where Si is the "sum of central members." This takes into account the membership

function values of only those members within a standard deviation of the cluster center.

Si is calculated as
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N (3-18)
Si --=E lyij

j=1

Finally, the Partition Density measure is calculated from [18]

S (3-19)

FHV

where FHv is the Fuzzy Hypervolume measure given by ( 3-14) and S is the total sum of

members, given by

K N (3-20)
S= I Y"i j

i=1 j=1

(7) Increase the number of clusters and repeat steps (2) through (6) until the maximum

number of clusters to be considered is reached.

(8) Examine the performance criteria to determine the optimal number of clusters. The

FHv criteria, indicating the volume of each cluster, should be a minimum indicating small,

tightly bounded clusters. The DpA and PD criterion, indicating the density of the points or

feature vectors within the clusters, should be a maximum indicating dense clusters.

The combination of these three measures will ensure clear separation between the

clusters, minimal volume of the clusters, and maximal number of points concentrated in

the vicinity of the cluster centers.

If no, or very little, relevant data are available to define the BMFs using the

clustering method described above, a heuristic approach should be adopted. The basis of
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the heuristic approach is the intuition of the person building the system, or that of experts

in the field. One consideration in developing heuristic-based BMFs should be a look to

the future, to the second phase of the Intelligent Hierarchical Decision Architecture

where rules relating performance at the functional-performance and task-level are built.

The functional-performance level BMFs should be developed such that they facilitate the

MOFP-to-MOTA transformation. Additionally, if one region within the universe

represents a more interesting area of concentration for the variable, more BMFs should be

defined in that region. Each input variable can have a different set of BMFs defined in

order to facilitate a logical description that variable.

Once the BMFs are defined for each test variable using either the clustering or

heuristic approach, each BMF is given a linguistic tag, to facilitate the common-sense

reasoning approach of the methodology. With the Basic Membership Functions defined,

the next step is the formation of the Composite Fuzzy Membership Functions using the

compositional methods described in the following section.

3.2.2 COMMFFY COMPOSITIONAL METHODS

Once the Basic Membership Functions (BMFs) for each functional performance measure

have been developed, the observed test data is introduced to develop the COMMFFY.

The COMMFFY can be derived from the BMFs and the test data in a number of ways.

Here nine different COMMFFY Compositional Methods are defined. The nine

compositional methods initially considered are permutations of xxx-ALL, xxx-MIN, xxx-

MAX and PROD-xxx, MAX-xxx, and MIN-xxx. As with all fuzzy operations, the

operation closest to the operand is conducted first, followed by the external operation.

Thus, the ALL, MIN, or MAX are performed, followed by the PROD, MAX, or MIN.

The compositional methods begin by looking at where each data point activates

the BMFs. For the internal operation, each data point is used to activate the BMFs with
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which it comes in contact. The degree of activation, and which BMF is activated by a

given data point depends on the operation being performed. For example, the xxx-ALL

methods (e.g., PROD-ALL, MAX-ALL, and MIN-ALL) let each data point activate all

the BMFs with which it comes in contact. For the xxx-MIN methods, only the BMF that

is the minimum of those activated by the data point is activated. For the xxx-MAX

methods, only the BMFs for which the data point is a maximum is activated. Once the

inner operation has been performed, that of activating the BMFs using each data point,

these activated BMFs are taken into the external operation to form the final COMMFFY.

The external operation considers all the activations within a given BMF and multiplies,

maximizes, or minimizes (for PROD-xxx, MAX-xxx, or MIN-xxx, respectively) the

individual activation levels to determine the final activation level for that BMF. Finally,

the COMMFFY is formed as the distribution of the resulting BMFs. Using the BMF set

composed of five triangular-shaped BMFs and five sample data points, illustrated in

Figure 4, the proposed compositional methods are illustrated below.
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Figure 4 Sample Basic Membership Functions and Data Points

The MAX-ALL Compositional Method would let each data point activate all

relevant BMFs, then the maximum value within each BMF would be used to form the

COMMFFY. An illustration of the result derived from this method on the sample data

points shown in Figure 4, is shown in Figure 5.

Figure 5 MAX-ALL, MAX-MAX, and MIN-MAX COMMFFY Compositional
Methods Result
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The MAX-MAX Compositional Method would let each data point activate only

the membership function for which it is a maximum, then the maximum value within

each BMF would be used to form the COMMFFY. In the sample problem, the MAX-

ALL and the MAX-MAX methods yield the same COMMFFY, shown in Figure 5.

The MAX-MIN Compositional Method would have each data point activate only

the BMFs for which the data point is a minimum, then the maximum of all the BMF

activations would be used to form the COMMFFY. The result of the MAX-MIN

Compositional Method for the sample problem is shown in Figure 6.

Figure 6 MAX-MIN COMMFFY Compositional Method Result

The MIN-ALL Compositional Method, similar to the MAX-ALL method

described above with the MAX replaced by the MIN, is shown in Figure 7. This method

uses each data point to activate all possible BMFs, then uses the minimum value within

each BMF as the contribution to the COMMFFY.
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Figure 7 MIN-ALL and MIN-MIN COMMFFY Compositional Methods Result

The MIN-MAX Compositional Method lets each data point activate the

membership functions for which it is the maximum, then takes the minimum within each

BMF for the contribution to the COMMFFY. In this example, the MIN-MAX, MAX-

ALL, and MAX-MAX methods all yield the same COMMFFY, shown in Figure 5.

The MIN-MIN Compositional Method lets each data point activate the

membership function for which it is a minimum, then takes the minimum value within

each BMF as the contribution to the COMMFFY. In this example, the MIN-ALL and

MIN-MIN methods yield the same COMMFFY, illustrated in Figure 7 above.

Finally, the product compositional methods, denoted PROD-ALL, PROD-MAX,

and PROD-MIN result from allowing the data point to activate the BMFs associated with

all, the maximum, or the minimum, respectively. Then the resulting COMMFFY is

formed by multiplying the component values together to get the maximum value of the

membership function for that region. Examples of the BMF activation values and the

resulting COMMFFYs for each method are shown in Figure 8 through Figure 10.
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Figure 10 PROD-MIN COMMFFY Compositional Method

For the sample problem, the MAX-MIN Compositional Method seems to provide

the most intuitively appealing result, in that it looks the most like a standard normal

statistical distribution which would result from these data. The MAX-ALL, MAX-MAX,

and MIN-MAX result seems to generalize all the membership functions to the maximum

level, while the MIN-ALL and MIN-MIN methods seem to generalize all the membership

functions to a minimum value; both extremes eliminating the distinctions in the data

provided by individual data points. Meanwhile, the product-based methods penalize the

generation of the COMMFFY as more data are collected, by decreasing the height of the

COMMFFY with every additional observation, due to the multiplication operation.

The aim of the various compositional methods, described above, is to develop a

Composite Fuzzy Membership Function, representative of the distribution of the observed

test data. Therefore, in selecting a compositional method, the result from the method

should generate a COMMFFY that resembles the underlying distribution of the data.

How can these intuitive descriptions of the fuzzy distributions be quantified? By

developing a set of Fuzzy-Statistical Similarity Measures, relating the distribution
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characteristics of the COMMFFY to standard statistical distributions. The similarity

measures, quantifying the relationships between the generated COMMFFYs and a

statistical distribution based upon the same data, will be used to eliminate some of the

compositional methods and optimize among the remaining ones.

3.2.3 FUZZY-STATISTICAL SIMILARITY MEASURES

Various information and similarity measures have been developed to express the

information contained in a fuzzy set. Fuzzy entropy is a measure which expresses the

average difficulty in making a decision on whether or not an element belongs to a fuzzy

set [12]. Several researchers have offered different formulations and interpretations of

fuzzy entropy, including Kauffman [19], Deluca and Termini [20], Kosko [21], and Pal

and Pal [22]. Fuzzy similarity measures have been suggested in the literature that are

based upon fuzzy subsethood [84],fuzzy distance measures [23], or fuzzy divergence [12].

Although fuzzy information and similarity measures are abundant, none capture

the type of information that is strived for in this work. The Intelligent Hierarchical

Decision Architecture's goal is to improve the decision-making capability of the high-

level decision-maker by aggregating and synthesizing low-level data into valid high-level

information. The COMMFFY Compositional Methods have been developed to aggregate

the low-level data resulting from multiple test observations into a single fuzzy

distribution for further processing by the Intelligent Hierarchical Decision Architecture.

Now, an information or similarity measure is needed which will validate this first step in

the Intelligent Hierarchical Decision Architecture's methodology. A measure or metric

is needed which will describe the information content of the COMMFFY and relate it to

the information contained within the raw data set which was used to generate the

COMMFFY. None of the currently-available fuzzy information or similarity measures
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are adequate to perform this task. Therefore, three Fuzzy-Statistical Similarity Measures

are described below to fill the void.

The similarity measures derived for optimizing the choice of COMMFFY

compositional methods are described below. Each compares characteristics of the

COMMFFY with characteristics of the standard normal statistical distribution which

would be derived from the same data set. Two of the comparisons between the fuzzy

distribution and the statistical distribution use the measure of central tendency for each

type of distribution. The measure of central tendency for a standard normal distribution is

its mean, while a similar measure in a fuzzy distribution is its defuzzified value.3 The

other measure compares the integrated area under the standard normal distribution with

the integrated area under the COMMFFY. Two of these measures are used to eliminate

several of the COMMFFY Compositional Methods from further use, while one is used

on-line in the Intelligent Hierarchical Decision Architecture to determine the optimal

choice among the remaining compositional methods.

The Center of Area (COA) Defuzzification Method yields a crisp value that is the

domain value for the center of area of the fuzzy region. The COA/Mean Similarity

Measure is calculated by comparing the defuzzified value derived from the COA

defuzzification method with the statistical mean, as

ya 1X100% (3-21)

The Method of Heights (MOH) Defuzzification Method yields a crisp value from

the members of the domain having membership function values greater than a given ox-

cut. The MOHIMean Similarity Measure is calculated as

3 The methods for deriving the defuzzified value from the COMMFFY used in these measures are described
in Appendix B.
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MO x100% (3-22)

Finally, a comparison of the area under a Normal Probability Distribution

Function (PDF) derived from the data and the corresponding COMMFFY area is made

using the COMMFFYINormal Distribution Similarity Measure, as

INIA - CIAJ x100% (3-23)

NIA

where

NIA = Normal PDF Integrated Area

CIA = COMMFFY Integrated Area

All of the similarity measures described above provide a comparison between the

Normal PDF characteristics and the COMMFFY characteristics, and are normalized

based upon the Normal PDF values. Each of the similarity measures should be

minimized to indicate a good compositional method.

Using these Fuzzy-Statistical Similarity Measures on the COMMFFYs generated

from the testbed case, demonstrates that there is not one universally optimal method of

generating the COMMFFYs. However, the similarity measures illustrate that there are

some COMMFFY Compositional Methods that should be eliminated from further use in

the Intelligent Hierarchical Decision Architecture. The methods that will be eliminated

from consideration are the PROD-xxx and the xxx-MIN methods.

The product-based methods are eliminated because of their propensity to penalize

the COMMFFY with each additional data point. A compositional method should build

more confidence (manifested in some values in the domain having larger degrees of

membership) in the COMMFFY as more data are gathered. However, the product-based
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methods violate this premise. As more data are gathered, the degree of membership of

each BMF within the COMMFFY decreases. This trait is illustrated quantitatively by the

COMMFFY/Normal Distribution Similarity Measure results for the testbed case shown in

Section 3.3. There, it can be seen that in all cases, the integrated COMMFFY area is

smaller, and in some cases substantially smaller (e.g., PROD-MIN and PROD-ALL result

for MOFP #2C) than the corresponding normal curve area. Therefore, since more

confidence in the decision-making ability should be generated as more data are gathered,

the product-based compositional methods are eliminated from further use.

The xxx-MIN methods are eliminated, because, although for the sample problem

illustrated in the previous section, the MAX-MIN method seemed to provide the most

appealing result,4 we see that as we look at the maximum values of the membership

functions, the xxx-MIN methods have very low degrees of membership. Using the

MOHIMean Similarity Measure with a = 0.5 on the testbed case COMMFFYs, this low

membership value trait is illustrated. In almost all cases, 5 the MOH defuzzified value

was zero because none of the degrees of membership within the COMMFFY exceeded

the a-cut level. Again, as with the discussion of the product-based methods, the decision-

making should be based on large membership function values. Therefore, the xxx-MIN

methods will be eliminated.

With these eliminations, four COMMFFY generation methods remain to be used

in the optimization step: MIN-MAX, MIN-ALL, MAX-MAX, and MAX-ALL.

4 This result occurred because one of the data observations was exactly on the maximum membership
function value of one of the basic membership functions and the minimum operation yielded a membership
function value of unity. If that observation has been on any point other than the apex of the triangular
membership function value, we would have seen a COMMFFY similar to the one resulting from the other
xxx-MIN methods.

' The MOFP #2A COMMFFY has a MOH defuzzified value, and this line of reasoning does not seem to
follow for that case. That MOFP's data values are extremely skewed to the right end of the data range.
Therefore, in the COMMFFY generation for those data there are domain values with membership function
values of unity even when the xxx-MIN methods are used. This does not hold in general for the xxx-MIN
methods.
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3.2.4 COMMFFY COMPOSITIONAL METHOD ON-LINE OPTIMIZATION

The COMMFFY/Normal Distribution Similarity Measure and MOH/Mean Similarity

Measure were used to eliminate the PROD-xxx and xxx-MIN compositional methods,

respectively, from further consideration. With those methods eliminated, the remaining

measure, the COAlMean Similarity Measure is used to optimize the COMMFFY

generation for a given data set. This optimization is done on-line as the COMMFFY is

generated. This on-line optimization process is necessary because, as the testbed case

results show in Section 3.3, there is not a clearly optimal method for generating the

COMMFFY in all cases. Therefore, the flow of the COMMFFY generation, as indicated

in Figure 11, includes the calculation of the COAlMean Similarity Measure and selection

of an optimum compositional method based upon its value for the current data set.
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Figure 11 COMMFFY Clustering Method

As illustrated in Figure 11, the Intelligent Hierarchical Decision Architecture's

Clustering Methodology consists of selecting a COMMFFY generation method,

generating the degree of membership vector and the COMMFFY vector, then calculating

the COA/Mean Similarity Measure. Once a COMMFFY has been generated using all the
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available methods, the COMMFFY with the minimum COA/Mean Similarity Measure

value is chosen for use in subsequent processing.

3.3 TESTBED CASE RESULTS

The Clustering Methodology described in this chapter will now be illustrated using one of

the functional performance measures from the testbed case. The methods will be

illustrated on MOFP #2: Reduction in Guidance, for each of the four threat systems. The

complete set of results, showing the resulting COMMFFY for each MOFP/Threat

combination is given in Appendix F.

3.3.1 BASIC MEMBERSHIP FUNCTION SELECTION

For this case, as is usually the case for OT&E programs, not have enough relevant data is

available to allow the use of the clustering methodology described in Section 3.2.1, so a

heuristic approach to defining the Basic Membership Functions must be used. In doing

this, it is noted that the functional performance measures can be divided into two distinct

categories: percentage-based measures with a 50% requirement, and a time-based

measurement. Triangular shaped BMFs with a 50% overlap of adjacent BMFs are chosen

for their simplicity. With these choices made, the BMFs to be used for the testbed case

are shown in Figure 12 and Figure 13 below.
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Figure 12 Percentage-Based Basic Membership Functions
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Figure 13 Time-Based Basic Membership Functions
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3.3.2 COMMFFY COMPOSITIONAL METHODS RESULTS

Using the BMFs shown in Figure 12, below are illustrated the resulting COMMFFYs for

one of the MOFP/threat combinations. Even though the discussion of Section 3.2.3

suggested that the PROD-xxx and xxx-MIN methods have been eliminated from further

consideration as compositional methods, their results are included here to further

illustrate that discussion.

Min-Min Compositional Min-Max Compositional Min-All Compositional
Method for MOFP #2C Method for MOFP #2C Method for MOFP #2C

0.3000 -............ 0.8000 0.3000- ----

0.2000 0.6000 0.2000
o.100 0.00 0.10

0.2000

0 1 24 36 48 60 72 84 96 0 1 26 39 52 65 78 9 0 1 26 39 52 65 78 9

Max-Min Compositional Max-Max Compositional Max-All Compositional
Method for MOFP #2C Method for MOFP #2C Method for MOFP #2C
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Prod-Min Compositional Prod-Max Compositional Prod-All Compositional
Method for MOFP #2C Method for MOFP #2C Method for MOFP #2C
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Figure 14 COMMFFYs Generated Using All Nine Compositional Methods for
MOFP #2C
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3.3.3 FUZZY-STATISTICAL SIMILARITY MEASURE RESULTS

It was asserted in Section 3.2.4 that there is not a single COMMFFY Compositional

Method that is optimal for all cases. To illustrate this assertion, the similarity measures

for the COMMFFYs from Section 3.3.2 are shown in Table 2 through Table 5.6 Included

in these tables, above each of the COMMFFY similarity measure results is a listing of the

associated statistical characteristics of the data set. The results from the methods that

were eliminated are shaded in light gray. The optimal method among the remaining

compositional method alternatives, based upon the result of the COAlMean Similarity

Measure, is shaded in dark gray and bolded within each table.

6 The similarity measures are calculated and shown for all of the COMMFFYs generated by the Clustering

Method for the testbed case. Only the COMMFFYs for the system's performance against Threat C are
shown in Section 3.3.2.
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Table 2 MOFP #2A COMMFFY Similarity Measures Results

Mean: 86.8089

Standard Deviation: 9.5034

Data Range: [73.61, 99.10]

Integrated Normal Curve Area: 22.0453

MOFP #2A Center of Area COA/Mean Similarity Measure (%)
-Min -Max -All -Min -Max -All

Min- 85.7695 83.9522 85.7695 1.1973 3.2907 1.1973
Max- 85.3143 83.7857 83.78571 1.7217 3.4825 3.4825
Prod- 89.2469 85.8650 90.9851 2.8084 1.0873 4.8107

MOFP #2A Method of Heights Defuzz Value MOH/Mean Similarity Measure (%)
-Min -Max -All -Min -Max -All

Min- 93.4285 85.3546 93.4285 7.6254 1.6752 7.6254
Max- 93.4285 85.1071 85.1071 7.6254 1.9603 1.9603
Prod- 93.4285 89.5103 93.4285 7.6254 3.1118 7.6254

MOFP #2A Integrated COMMFFY Area COMMFFY/Normal Distribution
Similarity Measure (%)

-Min -Max -All -Min -Max -All
Min- 22.9410 27.0150 22.9410 4.0629 22.5431 4.0629
Max- 23.6230 28.2030 28.2030 7.1566 27.9320 27.9320
Prod- 22.0907 18.8846 16.6498 2.0593 14.3372 24.4746
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Table 3 MOFP #2B COMMFFY Similarity Measures Results

Mean: 61.6760

Standard Deviation: 6.9254

Data Range: [51.94, 68.68]

Integrated Normal Curve Area: 17.3784

MOFP #2B Center of Area COA/Mean Similarity Measure (%)
-Min -Max -All -Min -Max -All

Min- 64.1881 59.3947 64.1881 4.0730 3.6988 4.0730
Max- 62.4179 60.0765 60.0765 1.2028 253 29
Prod- 64.9541 58.1887 61.9561 5.3150 5.6542 0.4541

MOFP #2B Method of Heights Defuzz Value MOH/Mean Similarity Measure (%)
-Min -Max -All -Min -Max -All

Min- 0.0000 59.2513 0.0000 --- 3.9313 ---
Max- 0.0000 60.0916 60.0916 --- 2.5689 2.5689
Prod- 0.0000 60.0000 0.0000 --- 2.7174 ---_ I

MOFP #2B Integrated COMMFFY Area COMMFFY/Normal Distribution
Similarity Measure (%)

-Min -Max -All -Min -Max -All
Min- 7.8580 20.8840 7.8580 54.7829 20.1721 54.7829
Max- 11.4310 24.2920 24.2920 34.2229 39.7827 39.7827
Prod- 4.36001 10.2380 1.1341 74.91 13 41.0877 93.4740
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Table 4 MOFP #2C COMMFFY Similarity Measures Results

Mean: 3 8.6749

Standard Deviation: 4.1911

Data Range: [32.81, 44.70]

Integrated Normal Curve Area: 10.537 1

MOFP #2C Center of Area COA/Mean Similarity Measure(%
______ -Min -Max -All -Min -Max -All
Min- 39.91621 34.5089 39.9162 3.2095 4.2921 3.2095
Max- 40.77901 35.1599 39.0480 5.4404 9.0885 094
Prod- 40.10031 30.8735 42.6761 3.6855 20,1717 10.3457

MOFP #2C Method of Heights Defuzz Value MOHIMean Similarity Measure (%)
______ -Min -Max -All -Min -Max -All

Min- 0.00001 34.3521 0.0000 --- 11.1772 ---___

Max- 0.00001 35.2032 35.2032 --- 1.2196 1.2196
Prod- 0.00001 30.0000 0.00001 --- 22.4303 ---___

MOFP #2C Integrated COMMFFY Area COMMFFYINormal Distribution
_________ _________Similarity Measur (%)

______ -Min -Max -All -Min -Max -All
Min- 8.0650 14.4600 8.0650 23.4609 37.2294 23.4609

F Max- 14.05501 16.4150 21.11501 33.3858 55.78291 100.3872
Prod- 0.83821 5.5371 0.09961 92.0452 47.45131 99.0547
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Table 5 MOFP #2D COMMFFY Similarity Measures Results

Mean: 53.2260

Standard Deviation: 21.0762

Data Range: [16.68, 84.02]

Integrated Normal Curve Area: 51.8908

MOFP #2D Center of Area COA/Mean Similarity Measure (%)
-Min -Max -All -Min -Max -All

Min- 53.8071 49.4011 51.3137 1.0917 7.1861 3.6
Max- 54.2361 49.6937 50.4549 1.8977 6.6364 5.2062
Prod- 53.5387 48.0459 49.8857 0.5874 9.7322 6.2756

MOFP #2D Method of Heights Defuzz Value MOH/Mean Similarity Measure (%)
-Min -Max -All -Min -Max -All

Min- 0.0000 49.7809 46.9651 --- 6.4725 11.7628
Max- 0.0000 50.1107 50.1107 --- 5.8529 5.8529
Prod- 0.0000 44.2310 20.0000 --- 16.8996 62.4243

MOFP #2D Integrated COMMFFY Area COMMFFY/Normal Distribution
Similarity Measure (%)

-Min -Max -All -Min -Max -All
Min- 23.3590 49.6450 34.2450 54.9843 4.3279 34.0056
Max- 26.6200 50.4040 59.4820 48.6999 2.8652 14.6291
Prod- 17.9290 38.6891 24.4358 65.4485 25.4413 52.9091
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It can be seen from these results, that the on-line optimization for these data would select

the following compositional methods:

MOFP #2A: MIN-ALL

MOFP #2B: MAX-MAX and MAX-ALL

MOFP #2C: MAX-ALL

MOFP #2D: MIN-ALL

The methodology generated the COMMFFYs using these optimal methods and sent them

forward to the next step in the Intelligent Hierarchical Decision Architecture. Overall,

for the 24 COMMFFYs generated at this stage for the testbed case, the MAX-MAX

method was used 8 times, the MAX-ALL was used 6 times, the MIN-MAX was used 7

times, and the MIN-ALL was used 3 times.

The next step is the Fuzzy Associative Memory which uses these optimal MOFP-

level COMMFFYs as input in the synthesis from the system's functional performance

information level to the task accomplishment information level.

3.4 CONTRIBUTION

The work described in this chapter makes contributions to the areas of both fuzzy set

theory and systems analysis theory. First, in the area of fuzzy set theory, clustering

techniques currently described in the literature only provide a means for clustering data

into like groups and assigning membership function values to define the degree of

belonging of each point (or feature vector) within the cluster. The Clustering

Methodology described here, that results in the generation of a Composite Fuzzy

Membership Function based upon the information available on a single variable, which

can be related to the underlying distribution of raw data, is an advance to the use of fuzzy
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set theory in analysis tasks, previously the domain of only statistical analysis tools.

Additionally, the similarity measures between the COMMFFY and standard statistical

measures provide a quantitative means of relating the probabilistic and possibilistic

distributions, not provided in any of the previously-developed fuzzy similarity measures.

Finally, the optimization of the COMMFFY generation based upon the fuzzy similarity

measures is a solution to the problem of not having a clearly optimal method. It provides

a means for adapting the methodology used for generating the COMMFFY on-line based

upon the data set being considered.

In the area of systems analysis, current analysis methodologies are limited to the

summarization of test observations using standard statistical techniques. Typically, those

techniques do not capture the essence of the underlying data completely, and once

calculated provide no means for further combination of information for higher level

inferencing. The COMMFFY will provide a mechanism for both summarizing the

underlying data into a meaningful fuzzy distribution, and provide a mechanism for

combining that information with other aspects of the system performance to allow

conclusions to be drawn on the system's high-level performance based upon observed test

data.
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CHAPTER FOUR

FUZZY ASSOCIATIVE MEMORY

4. FUZZY ASSOCIATIVE MEMORY

Fuzzy Associative Memories (FAMs) are a class of fuzzy neural networks that provide a

mechanism for mapping fuzzy sets to fuzzy sets [24]. The Intelligent Hierarchical

Decision Architecture needs a method of mapping the Composite Fuzzy Membership

Functions generated as a result of test measurements at the functional performance level,

to Composite Fuzzy Membership Functions at the task accomplishment level. This

mapping from functional performance level to task accomplishment level will be

accomplished using a modified Fuzzy Associative Memory structure. A FAM has been

chosen for the task among the various neuro-fuzzy techniques which could be used at this

stage in the hierarchy for several reasons. First, the FAM allows a tracking of the

decision-making process through its structure. The interested decision-maker can look at

the rule base being used by the FAM, and determine why the decisions are being made as

they are -- a very attractive quality for a decision aide. Second, in most cases, there is not

an abundance of input/output data available to train an OT&E analysis system.

Therefore, using one of the other neuro-fuzzy techniques that relies on vast amount of

training data before the system is operable, is impractical for an application where that

type of information does not exist. Finally, the FAM can be built from a series of

heuristic rules derived from expert opinion, and then can be modified as more
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information becomes available. This intelligent/iterative building trait of the FAM makes

it particularly attractive for an application where there is a requirement to do test planning

early in the system's development, when little information on the system's performance

characteristics is available. Then as more information about the system is gathered, either

through Modeling & Simulation studies or early testing efforts, the information in the rule

bank of the FAM can be updated to reflect the new knowledge. Therefore, the FAM has

been chosen to perform the MOFP-MOTA transformation in the Intelligent Hierarchical

Decision Architecture. This chapter discusses the basics of FAMs, describes how they

will be used in the Intelligent Hierarchical Decision Architecture, and closes with a

discussion of how the proposed usage is an extension to current theory in the FAM area.

4.1 FAM BASICS

4.1.1 FAM STRUCTURE

Fuzzy systems can be used to estimate any continuous function to any degree of accuracy

without the use of a mathematical model. Using a heuristic rule of the form "if the

antecedent is satisfied, then the consequence follows" the input-output characteristics can

be modeled by associations of fuzzy sets [25]. This forms the basis of the Fuzzy

Associative Memory. A fuzzy rule defines the relationship or transformation from one

fuzzy set to another, in the form "IF X is A, THEN Y is B," where A and B are fuzzy sets.

The FAM structure proposed by Kosko, also provides a weighting mechanism such that

the output from each rule can be weighted prior to its inclusion in the output function, as

shown in Figure 15.
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Figure 15 Fuzzy Associative Memory Structure

In this architecture, the input value fires each fuzzy rule to some degree to create a

fuzzy output Bi which is weighted and summed to provide an overall output B, which is

then subjected to defuzzification to yield a single crisp output, yj. The weight factors, wi,

control the relative importance of each output result in the overall output, based upon a

factor of interest to the system being controlled or analyzed. These weight factors may be

static values or may be adaptive, based upon the state of a selected variable in the system.

Although the architecture pictured in Figure 15 suggests a purely parallel

operation, the FAM rules can also be formulated into a two- or multi-dimensional FAM

bank where each cell is a fuzzy IEF-THEN rule. This configuration, without the name

FAM, is what is typically seen in the fuzzy controls literature as a Fuzzy Rule Bank, the

only difference is the weighting factors that are incorporated into the FAM bank structure

that are absent from the standard Fuzzy Rule Bank. This weighting scheme, which some

authors have interpreted as a credibility measure [85], allows the output to be a weighted

combination of the fuzzy outputs inferred by the individual rules, as
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m mF(y): _wiF(y)= w,,;'Di(y )  (4-1)

i=1 i=1

where i denotes the firing strength of each fuzzy rule.

4.1.2 FAM BUILDING

Various means have been suggested in the literature to construct FAM Banks, most of

them depending on the enumeration of the rules based upon expert opinion or derivation,

in controls application, from the control laws of the process. Heuristic rule bases built in

this fashion have been used successfully in many applications. But, in addition to

building the rule bank from purely qualitative information, how should a FAM Bank be

constructed if input/output data from the system/process is available in addition to the

expert opinion?

Given desired input-output data pairs, Wang and Mendel [26] suggest a five-step

procedure to generate a set of fuzzy rules which are subsequently used in a FAM as a

mapping

fAX) -- y (4-2)

The steps are:

Step 1: Divide the input and output spaces into fuzzy regions.

Step 2: Determine the degree of membership of each data point within

each input/output pair in each fuzzy region defined in Step 1, assign each
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data pair value to the region with the maximum degree, then derive a fuzzy

rule for each data pair.

Step 3: Resolve conflicts between rules (i.e., different rules having the

same antecedent but different consequences) by defining a degree for each

rule by multiplication of the constituent membership functions, as

D(rule) = ylA(XJ) yBt(x2) l'c(y) (4-3)

Then, use the rule with the maximum degree.

Step 4: Create a combined FAM Bank by melding the rules derived from

the numerical data and that derived from expert opinion.

Step 5: Define a defuzzification scheme to derive the crisp output value

based upon the fuzzy output value.

This procedure provides a mechanism for defining the rules in the FAM Bank

based upon rules derived from both input/output data and expert opinion. But what

happens when the data samples do not cover the entire range of defined FAM cells or the

FAM is multidimensional such that its size makes gathering expert opinion on every cell

tedious or impractical? Sudkamp and Hammell [27] introduced the concept of

completion, defined as "filling in the holes" in a FAM Bank using two methods: region

growing and weighted averaging. They demonstrated that the region growing technique

produced better results than the weighted averaging technique in their simulation work.

Additionally, they found that the region growing technique maintains consistency in the

consequence of the rules until a conflicting neighbor causes a change. This is a more

realistic treatment, especially for an application such as evaluation of system
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performance, because changes in system performance are likely to be gradual, or caused

by some external stimulus. Therefore, only the region growing method is discussed here.

Region growing, commonly used in image segmentation, fills the empty cells in a

FAM by extending the values in neighboring nonempty cells. Assuming that a numerical

value can be assigned to each cell, denoting that value as val(ij), and defining T to be the

set of nonempty neighbors, the value for the empty cell is obtained as

val(io,Jo) = val(ij) (4-4)
(i,j)eT IT1

This calculated value is inserted in the FAM Bank and the region growing process

continues until all cells are filled. In the work done by Sudkamp and Hammell, the

definition of neighboring cells was narrowly defined, including, in two dimensions, only

the cells directly above, below, and to the right and left of the empty cell. An extension

to their research could investigate how a broader definition of neighboring cells (i.e.,

using the cells completely encircling the empty cell) might improve the performance of

the resulting FAM Bank.

In developing the FAM Bank for the Intelligent Hierarchical Decision

Architecture, a variation of the methodology proposed in [26] is used. In the initial

phase, the development of the FAM will be fashioned after their Step 1, Step 2, and Step

4. Their conflict resolution procedures are not necessary in the initial FAM building

procedures, because only a small amount of information will typically be available to

build the FAM. It can be envisioned, however, that once the initial FAM is built and

initial modeling and simulation or testing efforts yield more information on the system-

under-test's performance, those conflict resolution procedures will be extensively used to

modify the initial FAM. In addition, although the region growing procedures suggested

in [27] provide an extremely efficient means of filling in the holes in a multi-dimensional

FAM, as will be seen in Section 4.1.3, their use will be unnecessary. Due to the
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Reduction Theorem proposed by Wang and Vachtsevanos, the problem can be brought

down to a reasonable size; and dealing with a sparsely populated, multi-dimensional

FAM can be avoided.

4.1.3 COMBINATORIAL EXPLOSION

The term combinatorial explosion in the discussion of FAM Banks was coined by Wang

and Vachtsevanos [24] in their development of fuzzy systems; going from a Single Input,

Single Output (SISO) system to a Multiple Input, Multiple Output (MIMO) system. The

size of the FAM quickly grows out of control, with both the number of rules and the

difficulty in the ability to visualize the FAM structure, growing with each added

dimension. This same problem will be encountered with the FAM within the Intelligent

Hierarchical Decision Architecture. Consider a case with seven functional performance

measures, each with five membership function regions, yielding 57 = 78,125 FAM rules

required to accomplish the MOFP to MOTA transformation! Vachtsevanos and Wang

suggested a Reduction Theorem, based upon the compositional rule of inference, to deal

with the combinatorial explosion problem.

Reduction Theorem: Let a fuzzy implicative rule be given of the form,

IF(Ail and Ai2) THEN Bi. If the compositional rule of inference is used for

the recall process, then

(A'i ,A'i 2 )o(Ail and A2 --+ Bi)

= [A'il o(A --- Bi)] A [Ai2'(Ai2 -- Bi)]

Using this theorem, a multidimensional problem can be decomposed into

individual two dimensional problems, with the result from each piece being combined
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using the fuzzy intersection operator to form the final result. Not only does this allow the

original problem to be handled in much more manageable pieces, but because each input

variable is handled with a separate set of relations, the degree of specificity of the fuzzy

membership functions may be adjusted as required for each variable, without affecting

the others, or further aggravating the combinatorial explosion problem. The Reduction

Theorem will be used within the Intelligent Hierarchical Decision Architecture to allow

the transformation of each individual functional performance measure to a higher-level

task accomplishment measure, then once all the information has been transformed to that

level, the combination using the minimum (intersection) operator will be performed to

yield a single COMMFFY at the task accomplishment level.

4.2 THE IHDA FUZZY ASSOCIATIVE MEMORY

The FAM within the Intelligent Hierarchical Decision Architecture (IHDA) will be used

to aggregate the information gathered on system performance at the functional

performance level to provide information on system performance at the task

accomplishment information level. The input to this phase of the hierarchy will be the

functional performance level COMMFFYs generated from the gathered test data and the

Clustering Methodology described in Chapter 3. The output from this phase will be a

COMMFFY of the system performance at the task accomplishment level. This MOTA-

level COMMFFY will subsequently be used as input to the FCM phase, which will take

into consideration the factors that were not testable or controllable during the testing

effort.

The issue with building a FAM to relate low-level, or MOFP-level, system

performance to a higher level of system performance is the same suggested by Wang and

Vachtsevanos -- combinatorial explosion. In the Jammer-X example, the FAM will relate

all the jammer's MOFPs to a single higher level measure. There are six MOFPs and nine
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membership functions for each MOFP are used, the resulting FAM, including all the

interrelationships, would have 96 or 531,441 cells! Clearly, a better way than a brute-

force FAM which encodes each level of each MOFP in a single rule is needed. The

methodology, described below, uses the Reduction Theorem as a basis for bringing the

problem down to size.

Rather than discussing the FAM-building methodology in general terms, Section

4.3 will walk through each step, building the FAM for the testbed case to illustrate the

discussion. The basic methodology follows the steps suggested in [26], modified by the

Reduction Theorem of [24]. The steps in the methodology are:

- Define the input/output fuzzy sets

- Derive the fuzzy rule banks to relate each input variable to each output variable

- Implement the FAM using the Reduction Theorem

4.3 BUILDING THE IHDA FAM

The first task is to build the FAM rule bank. As mentioned at the beginning of this

chapter, frequently in the OT&E environment, there is not a lot of information available

to relate system performance at the two levels of interest. Therefore, initially the rules

will be developed by experts in the field, then as the knowledge of the system under test

increases, there may be other sources of information available to tune the FAM rule bank

to make it more reliable. For the testbed case, a source of information beyond that

provided by expert opinion was available. A one-versus-one (1-v-1) engagement model,

named the Enhanced Surface-to-Air Missile Simulation (ESAMS) was used to model the

interaction between the target aircraft, carrying the Jammer-X, and the threat system.

Using ESAMS and running sensitivity analyses on the input variables, the relationships

between each MOFP-level measure and the MOTA-level measure, Reduction in
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Probability of Kill, were generated. Once these relationships were developed from the

ESAMS sensitivity analyses, the FAM rule bank was created.

Once the FAM rule bank has been developed, the next task is to determine how it

will be used. In all the current literature on the use of neuro-fuzzy tools, the input is a

single value which activates the input fuzzy set to a certain degree, which subsequently

activates the output fuzzy set to a certain degree, then finally using an aggregation and

defuzzification scheme the crisp result from the given input value results. To more fully

understand the standard uses of FAMs, a fuzzy inference system was built for the testbed

case using the Fuzzy Logic Toolbox within MATLAB® [28]. From that system, it

became evident that a mechanism is in place to consider only one value of each functional

performance measure at a time. However, here, instead of dealing with a single input

value, an input fuzzy distribution which has been generated from all the possible input

values observed during the entire testing phase, is being used. It is not meaningful to

separate the gathered data and use it as individual input values to the FAM, because each

of the measurements were taken under differing conditions -- taking one from each

MOFP to develop an input set has no physical significance to the analysis task.

Therefore, a methodology must be developed through which the FAM can handle a

COMMFFY as an input and provide a COMMFFY as an output.

The following sections illustrate the construction and use of the Intelligent Hierarchical

Decision Architecture's FAM with the testbed case.

4.3.1 FuzzY SET DEFINITION

The first step in the FAM-building procedure is to divide the input and output spaces into

fuzzy regions. This has already been done for the testbed case, in the definition of the

Basic Membership Functions used in the Clustering Methodology. In Chapter 3, the

MOFPs were divided into two classes: a percentage-based measure and a time-based
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measure. These percentage-based measures are used for most of the MOFPs, and for the

consolidated MOTA in the testbed case. The definitions of the triangular-shaped fuzzy

sets were given graphically in Chapter 3. These definitions, now in terms of their apex

location, region of support, and linguistic tag are in Table 6, below.

Table 6 Percentage-Based Basic Membership Function Definition

Percentage-Based Fuzzy Set Characteristics

Linguistic Tag Apex Location Region of Support
LO Plateau, 0 - 10 0-20

LOMEDLO 20 10-30
MEDLO 30 20-40

HIMEDLO 40 30-50
MED 50 40-60

LOMEDHI 60 50-70
MEDHI 70 60-80

HIMEDHI 80 70-90
HI Plateau, 90- 100 80-100

In addition to the percentage-based fuzzy set definitions, there is one MOFP

within the testbed case which is a measure of time delay. The fuzzy set definitions for

that MOFP are given in Table 16. The C-language code that implements the handling of

the fuzzy sets has been parameterized such that any fuzzy set definitions can be used

simply by defining a file with the membership function limit points. The code is written

to read the values contained in the file into an array, then works with the relative array

locations rather than the numerical values.
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Table 7 Time-Based Basic Membership Function Definition

Time-Based Fuzzy Set Characteristics
Linguistic Tag Apex Location Region of Support

LO 0 0-2
LOMEDLO 2 0-4

MEDLO 4 2-6
HIMEDLO 6 4-8

MED 8 6-10
LOMEDHI 10 8-12

MEDHI 12 10-14
HIMEDHI 14 12-16

HI Plateau, > 16 > 14

4.3.2 Fuzzy RULE DERIVATION

The next step in the FAM-building procedure is to derive the fuzzy rule for each

input/output data pair. As described earlier, in the early stages of a test program, there

may not be much information available to derive these rules. When this is the case,

heuristic rules derived from experts in the field must be used. For the testbed case, an

engagement simulation that models interactions between threat systems and aircraft, the

Enhanced Surface-to-Air Missile Simulation (ESAMS) was used to develop relationships

between each MOFP-level measure and the MOTA-level measure. Sensitivity studies

were run and the results were given in graphical form [29] as shown in Figure 16 through

Figure 21.
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Figure 16 Reduction in Hits vs. Reduction in Pk Relationship
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Figure 17 Reduction in Guidance vs. Reduction in Pk Relationship
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Reduction in Track Time due to Breaklock
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Figure 18 Reduction in Track Time due to Breaklock vs. Reduction in Pk
Relationship
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Figure 19 Track on Jam vs. Reduction in Pk Relationship
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Increase in Track Errr vs. Pk
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Figure 20 Increase in Track Error vs. Reduction in Pk Relationship
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Figure 21 Delay between Threat Engagement and Jammer Response vs. Reduction
in Pk Relationship
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Based upon the fuzzy set definitions given in Table 6 and Table 7 and the

relationships given in Figure 16 through Figure 21, the FAM Rule Bank is developed.

The Reduction Theorem will be used to combine the information across the various

MOFPs once it is transformed to the MOTA-level; therefore, the rules are written to

relate each individual MOFP to the MOTA measure. The rules are shown below.

4.3.2.1 REDUCTION IN HITS RULE BANK

If Reduction in Hits is LO, Reduction in Pk is LO

If Reduction in Hits is LOMEDLO, Reduction in Pk is LOMEDLO

If Reduction in Hits is MEDLO, Reduction in Pk is MEDLO

If Reduction in Hits is HIMEDLO, Reduction in Pk is HIMEDLO

If Reduction in Hits is MED, Reduction in Pk is MED

If Reduction in Hits is LOMEDHI, Reduction in Pk is LOMEDHI

If Reduction in Hits is MEDHI, Reduction in Pk is MEDHI

If Reduction in Hits is HIMEDHI, Reduction in Pk is HIMEDHI

If Reduction in Hits is HI, Reduction in Pk is HI

4.3.2.2 REDUCTION IN GUIDANCE RULE BANK

If Reduction in Guidance is LO, Reduction in Pk is LOMEDLO

If Reduction in Guidance is LOMEDLO, Reduction in Pk is MED

If Reduction in Guidance is MEDLO, Reduction in Pk is MED

If Reduction in Guidance is HIMEDLO, Reduction in Pk is LOMEDHI

If Reduction in Guidance is MED, Reduction in Pk is MEDHI

If Reduction in Guidance is LOMEDHI, Reduction in Pk is MEDHI

If Reduction in Guidance is MEDHI, Reduction in Pk is HIMEDHI
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If Reduction in Guidance is HIMEDHI, Reduction in Pk is HI

If Reduction in Guidance is HI, Reduction in Pk is HI

4.3.2.3 REDUCTION IN TRACK TIME RULE BANK

If Reduction in Track Time is LO, Reduction in Pk is LOMEDLO

If Reduction in Track Time is LOMEDLO, Reduction in Pk is MED

If Reduction in Track Time is MEDLO, Reduction in Pk is MED

If Reduction in Track Time is HIMEDLO, Reduction in Pk is LOMEDHI

If Reduction in Track Time is MED, Reduction in Pk is MEDHI

If Reduction in Track Time is LOMEDHI, Reduction in Pk is MEDHI

If Reduction in Track Time is MEDHI, Reduction in Pk is HIMEDHI

If Reduction in Track Time is HIMEDHI, Reduction in Pk is HI

If Reduction in Track Time is HI, Reduction in Pk is HI

4.3.2.4 TRACK ON JAM RULE BANK

If Track on Jam is LO, Reduction in Pk is LO

If Track on Jam is LOMEDLO, Reduction in Pk is MEDLO

If Track on Jam is MEDLO, Reduction in Pk is HIMEDLO

If Track on Jam is HIMEDLO, Reduction in Pk is LOMEDHI

If Track on Jam is MED, Reduction in Pk is MEDHI

If Track on Jam is LOMEDHI, Reduction in Pk is HIMEDHI

If Track on Jam is MEDHI, Reduction in Pk is HIMEDHI

If Track on Jam is HIMEDHI, Reduction in Pk is HIMEDHI

If Track on Jam is HI, Reduction in Pk is HIMEDHI
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4.3.2.5 INCREASE IN TRACK ERROR RULE BANK

If Increase in Track Error is LO, Reduction in Pk is LO

If Increase in Track Error is LOMEDLO, Reduction in Pk is LO

If Increase in Track Error is MEDLO, Reduction in Pk is LO

If Increase in Track Error is HIMEDLO, Reduction in Pk is LO

If Increase in Track Error is MED, Reduction in Pk is LO

If Increase in Track Error is LOMEDHI, Reduction in Pk is LO

If Increase in Track Error is MEDHI, Reduction in Pk is LO

If Increase in Track Error is HIMEDHI, Reduction in Pk is LOMEDLO

If Increase in Track Error is HI, Reduction in Pk is LOMEDLO

4.3.2.6 DELAY TIME RULE BANK

If Delay Time is LO, Reduction in Pk is MEDHI

If Delay Time is LOMEDLO, Reduction in Pk is MEDHI

If Delay Time is MEDLO, Reduction in Pk is MEDHI

If Delay Time is HIMEDLO, Reduction in Pk is MEDHI

If Delay Time is MED, Reduction in Pk is LOMEDHI

If Delay Time is LOMEDHI, Reduction in Pk is HIMEDLO

If Delay Time is MEDHI, Reduction in Pk is LOMEDLO

If Delay Time is HIMEDHI, Reduction in Pk is LO

If Delay Time is HI, Reduction in Pk is LO
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4.3.3 FAM IMPLEMENTATION

Due to the lack of a diverse group of information sources, that would have provided

conflicting information in the development of the FAM rules, the task of resolving

conflicts is not required. However, the conflict resolution method might come into play

in the refinement of the FAM rule bank as more information is gathered on the system-

under-test. Additionally, the task of melding the rules derived from numerical data with

those derived from expert opinion is limited to examining the rules listed in the sections

above and verifying that they make intuitive sense. Thus, the next step after construction

of the FAM, is FAM implementation. C code has been developed to perform the actions

of transforming the COMMFFY derived from the previous steps into a COMMFFY at the

MOTA level. The flow-chart for that implementation code is shown in Figure 22.
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Figure 22 FAM Implementation Code Flow Chart

Figure 22 illustrates that the FAM is used as follows. Beginning with the MOFP-

level COMMFFYs generated by Clustering Methodology, the FAM Rule Banks are read

into system memory, giving the transformation from the MOFP-level BMFs to the

MOTA-level BMFs. The transformation from MOFP-level to MOTA-level is then

performed using these FAM Rule Banks. Once the MOFP-to-MOTA transformation has

occurred, using the Reduction Theorem, the performance at the MOTA-level for each

MOFP is combined using a fuzzy intersection operation. The end product of the

aggregation is system performance at the MOTA-level for each logical division of the

system performance (e.g., in the testbed case, the logical division is system performance

against individual threat systems). These aggregated functions are still in BMF format, so
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the final step is to generate the MOTA-level COMMFFY from these degrees of

membership of each BMF. These MOTA-level COMMFFYs are the output of this phase

of the Intelligent Hierarchical Decision Architecture. They will be used as input to the

FCM in the next phase.

4.4 TESTBED CASE RESULTS

The FAM described in Sections 4.2 and 4.3 has been successfully implemented in a C-

language program, based upon the flow chart shown in Figure 22. This code was

executed using the testbed case data and the resulting MOTA COMMFFYs are shown in

Figure 23 through Figure 26. The input to the FAM was a COMMFFY for each MOFP

and for each threat. The FAM served to aggregate the information across the various

MOFPs and provide an output at the MOTA-level for each threat system.
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Figure 23 Threat A MOTA-level COMMFFY
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Figure 24 Threat B MOTA-level COMMFFY
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Figure 25 Threat C MOTA-level COMMFFY
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Figure 26 Threat D MOTA-Level COMMFFY
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From these COMMFFYs, it can be seen that the original trend in the data has

carried through the analysis and aggregation process to this point. The Threat A

COMMFFY is substantially above the 50% requirement. The Threat B COMMFFY is

concentrated around the 50% requirement. The Threat C COMMFFY is concentrated

below the 50% requirement. Finally, the Threat D COMMFFY shows a wide dispersion

across the domain. This gives a satisfying intuitive feel that the analysis hierarchy is

manipulating the data as would have been expected. These MOTA-level COMMFFYs

will now serve as the input to the next phase of the hierarchy -- the Fuzzy Cognitive Map

which will adjust the COMMFFY to take into consideration factors that could not be

tested or controlled during the testing effort.

4.5 CONTRIBUTION

The development of this section of the decision hierarchy has provided a means for

working with a Fuzzy Associative Memory whose input and output are functions, here in

the form of COMMFFYs, rather than individual data points. This is particularly useful

for those applications where data can only be gathered on one aspect of a system's

performance at a time, such as is usually the case during testing efforts. During a test,

one experimental design can be set up to collect data on a given aspect of the system's

performance, then another experimental design is set up to collect data on another aspect,

and so on. Taking one reading from each of those experimental design set-ups and

combining them into an artificially-derived data set that would be required to use the

currently-available fuzzy tools, is a misuse of the collected data, and could lead to

misleading results. This artificial data-set would be required to analyze data using the

tools provided in such popular fuzzy logic packages as MATLAB's Fuzzy Logic

Toolbox. This research effort provides an improvement to the current fuzzy logic
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analysis toolbox -- the ability to work with input and output functions rather than

individual data points.
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CHAPTER FIVE

FUZZY COGNITIVE MAP

5. FUZZY COGNITIVE MAPS

Political scientist, Robert Axelrod introduced cognitive maps in the mid- 1970's as a

method of representing political and social scientific knowledge [30]. The maps he

proposed were signed digraphs with nodes representing variable concepts and edges

representing causal connections. Since that time, Bart Kosko has extended the theories

put forth by Axelrod to develop Fuzzy Cognitive Maps (FCMs), allowing the causal

relations between concepts to take on fuzzy relations. Other researchers have taken

Kosko's work and extended it to look at such diverse topics as: allowing non-linear

relations between concepts, determining weighting schemes for the provided information,

building hierarchical FCMs to consider relations at various conceptual levels, and using

FCMs for failure mode analyses. Fuzzy Cognitive Maps will be used within the

Intelligent Hierarchical Decision Architecture to modify the system behavior, measured

at the task accomplishment level, considering factors that cannot be tested or controlled

during the testing phase. The FCM theories put forth by Kosko and others, will be

extended in this research to allow FCMs to be used as a modifier to system performance

measures. The current state-of-the-art in FCM use is to use them as a binary predictor or

conceptual presence indicator. Appendix C provides an overview of the basic theories of

FCMs developed by Kosko and other researchers. This chapter begins with a brief
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overview of the current uses and advances in the FCM arena. After that introduction, the

chapter outlines the FCM's use in the Intelligent Hierarchical Decision Architecture,

provides an illustration of the Intelligent Hierarchical Decision Architecture's FCM

Methodology, then finally, closes with a discussion of how this use will advance the state

of knowledge in the FCM arena.

5.1 DRAWING INFERENCES USING FCMS

Drawing inferences based upon the information contained within an FCM is a simple

matter of repeated matrix multiplication and thresholding operations. The result is a
"walk" through the states of the FCM until a limit state or cycle is reached; indicating the

final stable state(s) of the system resulting from the original input condition. Based upon

the limit cycle existence, the FCM has proven to be an ideal tool to answer "what if'

questions. Once the FCM has been constructed, it can be used to draw inferences on

what concepts contained in the FCM will result if one of the concepts is activated. For

example, a common example is the FCM built to illustrate the interrelationships between

various aspects of South African politics. This FCM was developed by Kosko based

upon a syndicated article by Walter Williams and is shown in Appendix C. This research

will extend the use illustrated there, to show that FCMs can also be used to adjust input

membership functions as a result of the influence of the factors included in the FCM.

5.2 CURRENT FCM USES AND ADVANCES

Bart Kosko introduced the concept of Fuzzy Cognitive Maps in his seminal 1986 work

[93], based on the original work done by Axelrod [30] in the area of Cognitive Maps to

model social and political science phenomena. Kosko developed the fuzzy causal algebra

as a means for quantifying the edge values in terms of fuzzy sets. Since then, Kosko's

work has been extended in a number of ways. This section contains a brief review of the
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state of the art of FCM construction and use, outlined in the current literature in the field.

It is included to give the reader an appreciation of where the theory stands and how the

current research will extend the theoretical state of the art in the FCM arena.

Taber and his colleagues provided a mechanism for quantifying the credibility

weighting scheme discussed in Equation C-4 of Appendix C. They assumed that a

knowledge pool contains a healthy measure of concurrence around the central concepts

[31]. Based upon this assumption, they developed a quality measure for the knowledge

base developed by each expert based upon the Hamming distance between inferences

invoked by each FCM to the same input conditions. This quality measure was used to

weight the expert's opinion based upon his closeness to others'. To test the weighting

mechanism, they included FCMs generated by "synthetic experts" into the process. The

FCMs from the synthetic experts were FCMs from the real experts contaminated with

noise to degrees varying from 0-100% [32]. Their methodology was able to separate the

actual experts from the synthetic experts. Additionally, they assigned weighting factors

illustrating a roll-off effect to minimize the risk associated with using information

contributed by sources demonstrating a significant deviation from the standard response.

Zhang and Chen [92] introduced a trivalent logic mechanism, allowing negative,

positive, and neutral causal relations and developed what they termed a NPN (negative-

positive- neutral) calculus. This contribution eliminated the need, suggested originally by

Kosko, of replacing each concept quantity with two concepts: the quantity and its

associated dis-quantity (thus doubling the size of the FCM). They developed a logic

framework to deal with the trivalent values and extended standard fuzzy logic inferencing

to handle the new logic system. Using these mechanisms, they showed a method of

combining expert opinion that takes into consideration the effects of different paths to a

result rather than simply adding augmented matrices together, which has the potential of

"canceling out" opposing opinions.

The limitation of the FCMs proposed to this point has been that they only allow

representations of relationships that are linear, time-invariant, and non-conditional [33].
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These limitations were addressed by Masafumi Hagiwara in his work on Extended Fuzzy

Cognitive Maps. There, he introduced E-FCMs including weights with nonlinear

membership functions, conditional weights, and time delay weights. Using the FCM

originally introduced by Zhang and Chen, dealing with public health issues, the relations

were modified to include non-linear functions, time delays, and conditional weights.

Hagiwara claimed to show that the resulting inference behavior of the E-FCM was

radically different (although the results illustrated in the referenced article do not seem as

dramatic as the author claims) from that using the standard FCM.

FCMs discussed thus far have been developed based upon information supplied

by experts in the form of expert opinions. The mechanism for building FCMs based upon

data had not been discussed or considered. Researchers at Florida Institute of Technology

have developed a mechanism through which FCMs can be built from user-supplied data

in place of, or as a supplement to expert opinion [34]. This is done through converting

numerical vectors containing the data sets into fuzzy sets through an a-level cut and an

interpolation procedure to project the data elements proportionally into the [0, 1] interval.

To determine the positive or negative causality values, a similarity relation between the

vectors is calculated. Finally, the direction of the causality is determined by expert

opinion. By following this procedure an FCM can be developed based upon measured

data, rather than relying solely on expert opinion. The introduction of this work suggests

a means of collecting information from both experts and numerical data sources, then

using the expert weighting/grading scheme suggested by Taber and his associates to

determine relative credibility of the various sources.

Finally, Australian researchers at the University of Melbourne have begun to

explore the use of FCMs in a multi-layered approach [35]. Each layer of the FCM would

be responsible for making inferences at a specific information level, then providing the

information as input to the next higher inference level. They suggest a goal level which

describes desired outcomes linked by common criteria, a context level providing a second

level of generalization, and finally the lowest FCM level providing a specialization level.
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This work parallels, to a certain extent the work being done here, in that various levels of

decision-making are segregated into separate tasks which feed into each other. However,

the work done by the Australian researcher uses FCMs for each level, whereas, the

Intelligent Hierarchical Decision Architecture uses other tools including Fuzzy

Associative Memories, Fuzzy Clustering, and Dempster-Shafer Theory to accomplish the

task.

5.3 THE IHDA FUZZY COGNITIVE MAP

The FCM within the Intelligent Hierarchical Decision Architecture will be used to

modify the measured system performance at the task accomplishment level to account for

factors that are not controllable or testable in the OT&E testing effort. For example,

consider the Jammer-X system. During the testing effort, the effects of using the system

are measured and quantified by measurements taken at the functional performance level

and these measures are subsequently aggregated using a FAM to yield a COMMFFY at

the task accomplishment level. There are various factors, including such things as tactics,

the number of other aircraft in the engagement scenario, the mix of threats involved in

the scenario, weather conditions, etc. Which cannot be measured or controlled during

testing, but are known to have an impact on the system performance. An FCM will be

developed and used to adjust the testing-based system performance measurement to

account for these other factors.
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C. The resulting FCM is shown in Figure 27. With the global FCM developed, it will be

97



used to infer the change to the MOTA-level COMMFFY resulting from the FCM factors,

using the methodology described below.

5.3.1 THE IHDA FCM PERFORMANCE ADJUSTMENT METHODOLOGY

The performance-adjustment methodology depends on a melding of the contributions of

many of the researchers described in Section 5.2 as well as extensions of their

methodologies to solve the unique application issues posed by using an FCM to adjust

system performance measures. The methodology is enumerated below, with an

illustration provided in the Section 5.4.

1. Collect individual FCMs from system experts and meld into a single, global FCM

using the knowledge combination operator proposed by Pelaez, described in Appendix C

[97].

2. Using the global FCM, ignore the linguistic tags associated with each link and treat the

FCM as a trivalent map. Using this global, trivalent map, define its associated adjacency

matrix.

3. From the adjacency matrix definition and a vector representing the activation of each

concept, use the matrix multiplication/thresholding operation with the +1/0/-i clamping

values to determine the limit cycle or limit state associated with each concept. The limit

cycle or limit state for each concept defines the active concepts that are subsequently used

to limit the number of variables considered in defining paths from the policy variable to

the value variable7 [93].

7 These terms were introduced by Axelrod in his use of Cognitive Maps as a political science tool. The
policy variable is the active concept being considered, while the value variable is the central concept whose
value is being examined for changes due to the application of the active concept. In the testbed case, the
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4. Using the active concepts defined from the adjacency matrix

multiplication/thresholding operation, define all possible paths from each policy variable

to the value variable using the active concepts as the allowable links.

5. Once all the possible paths, 1, are defined, use the pre-defined linguistic tag relative

strengths to define the indirect effect using the minimum operation, as

Ii(Ci,Cj) = min{e(Cp,Cp+):(p,p + 1) e (i,k ,k2,.... 'J)} (5-1 )

6. Considering all the possible paths from a given policy variable to the value variable,

calculate the total effect using the maximum operation, as

T(Ci,Cj) = maxIl(C., (l<l<m I ( 5-2 )

7. List the total effects in rank-order from the most negative impact on the system

performance measure to the most beneficial impact on the system performance measure.

8. Calculate the adjustment to the MOTA-level COMMFFY generated by the most

negative impact (worst case) and the most positive impact (best case) using the resulting

total effect linguistic tag as a modifying hedge. This adjustment will be performed based

upon the use of linguistic hedges [13] which serve to modify a fuzzy set. The adjustment

will be based upon a parameterized exponential factor applied to the MOTA-level

COMMFFY membership function values, as shown in ( 5-3 ) for a positive hedge

adjustment and ( 5-4 ) for a negative hedge adjustment.

policy variable will be each concept in the FCM that are examined in turn, to examine the result in
Reduction in Pk, the value variable.
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YIAd M y k (5-3)

-Ad] /(5-4)

The values of k are chosen to provide an adequate adjustment to the COMMFFY.

The worst case and best case performance results are carried forward to the

Aggregation Methodology step to establish a system performance bound at the task-level

based upon both measured test performance and other factors that will affect system

performance that could not be tested.

5.4 TESTBED CASE RESULTS

Step 1: Define the global FCM.

A survey, including a Fuzzy Cognitive Map Background Primer, has been distributed to

Electronic Combat system experts within the Air Force, Department of Defense, and

commercial contractor communities. Results, in the form of FCMs for the testbed case,

were received and the global FCM shown in Figure 27 resulted.

Step 2: Define the global FCM's adjacency matrix.

From Figure 27, define the following concept numbers to simplify the FCM to adjacency

matrix conversion:

C1: Number of Threats in Scenario

C2: Target/Threat Relative Distance
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C3: Tactics

C 4 : Diversity of Threats

C5: Situational Awareness

C6: Environment

C7: Human Factors

C8: Reduction in Pk

Then, the adjacency matrix becomes:

0 -1 -1 0 0 0 0 -1
0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 -1 0 0 -1F =
0 0 1 0 0 0 0 0

0 0 -1 0 -1 0 0 1

0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0

Step 3: Determine limit state associated with each concept.

This step involves consideration of each concept, C1 through C7, in turn as a policy

variable, while C8 (Reduction in Pk) remains the value variable throughout. To

accomplish this, the multiplication/thresholding operation is performed using the +1/0/-1

clamping values, with each of the concepts C1 - C7 as a starting point. The operation is

illustrated below with C1, the remainder follow in the same manner.

C1 = [1000000]
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C1F=[0-1 -1000-1]

--> [1 -1 -1000-1 ]"Cla

CiaF =[0-1 -1000-3]

-- [1 -1 -1000-1 ]=C 1Ls

The remaining concepts are used similarly in the multiplication/thresholding operation to

yield the following limit states.

CLS= [0 100000 1]

C3LS = [00 10000 1]

C4LS=[00-11 -100-1]

C5LS= [00 10 100 1]

C6LS= [00-10-1 100]

C7LS= [0000001 -1 ]

Step 4: Define possible paths from each policy variable to the value variable.

Considering the allowable nodes, defined by the limit states, the possible paths can be

defined. Again using C1 as an example, the allowable nodes are C1, C2, C3, and C8.

Using only these nodes and their connecting edges, the following allowable paths from C1

(policy variable) to C8 (value variable) are defined:

C1  C8

C1 - C 2 - > C 8

C 1 -C 3 -- C 8
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The remainder of the possible paths are defined similarly, with the following results.

C 2 -- )C 8

C3 --)C8

C 4 --)C 8

C4 - C5 C3 -4 C8

C 5 -4 C 3 - C 8

C 6 -'-> C8

C6 - C3 -4 C8

C 6 - C 5  C 3 - C 8

C7 -' C8

Step 5: Define indirect effects.

Using the possible paths defined in Step 4, the indirect effect is calculated. First, the

relative strengths of the linguistic labels used to describe the relationships are defined.

For the testbed case, assume that {little < some < much very}. The minimum

operation is carried out in accordance with these relative strengths. The sign of the label

is brought along to describe the direction of the relationship; however, it is not considered

in the minimization operation. The result for the paths defined in Step 4 are shown

below.
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C 1 - C 8 = min{-some} = -some

C 1 -> C 2 -- C 8 =* min{ -much, +very} = -much

C1 -4 C3 -4 C8 = min{ -some, +very} = -some

C 2 -4 C 8 : min{+very} = +very

C 3 - C 8 => min{+very} = +very

C 4 - C 8 = min{-very} = -very

C4 - C5 -- C3 -> C 8 = min{-some, +very, +very} = -some

C5 -- C3 -- C8 = min{+very, +very} = +very

C6 ---> C8 => min{+little} = +little

C6 - C3 -> C8 = min{ -some, +very} = -some

C 6 - C 5 - C3 - C 8 = min{-very, +very, +very} = -very

C7 -- C8  min{-some} = -some

Step 6: Define total effects.

The total effect, described intuitively as the strongest of the weakest links, is now defined

by taking the maximum of the path link strengths within each concept. The results are

shown below.

T(C1 , C8) = max{-some, -much} = -much
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T(C2, C8) = max{+very} = +very

T(C3, C8) = max{+very} = +very

T(C4 , C8) = max {-very, -some } = -very

T(C5 , C8) = max{+very} = +very

T(C6 , C8) = max{+little, -some, -very} = -very

T(C 7, C8) = max {-some } = -some

Step 7: Rank order the effects.

The effects shown in Step 6 are now rank-ordered for their importance in affecting the

value variable. Using the same linguistic importance ranking as shown in Step 5, but

now including the sign of the effect, the following results.

Most Negative Impact: C4 and C6; -very

C7; -some

C1; -much

Most Positive Impact: C2, C3, and C5; +very

Step 8: Adjust the MOTA-level COMMFFY.

The final step is to use the most negatively and most positively impacting effects to adjust

the MOTA-level COMMFFY generated from the previous phases of the Intelligent

Hierarchical Decision Architecture. Using the linguistic tags as a modifying hedge, the

parameter, k, to be used for the COMMFFY adjustment is defined. Based upon the

common use of linguistic modifiers in the fuzzy literature [82], a value of k=2 is chosen

to be associated with the label very. Table 8 gives the definition for the values of k

chosen for the other linguistic labels in this testbed case.
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Table 8 Linguistic Tag/Hedge Parameter Relationships

Linguistic Tag Value of k

very 2.0
much 1.5
some 1.25
little 1.1

Using these values for the exponential parameter, the adjustment on a sample

MOTA-level COMMFFY is illustrated in Figure 28 through Figure 31. The best-case

and worst-case adjustments to all the testbed case task-accomplishment level

COMMFFYs (using only the +very and -very adjustments) are given in Appendix F.

COMMFFY Adjustment for +/- Very

1.0000

0.9000

0.8000

0.7000 Original
060 !. COMMFFY

0.6000 -Very"
0.5000
0.4000 "+Very"

0.3000

0.1000

0.0000
C N \D 00 C) N "It 110

M- Itc~~ 00 0

Figure 28 COMMFFY Adjustment as a Result of Linguistic Hedge "Very" (k=2.0)
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COMMF FY Adjustment for +-Much
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Figure 29 COMMFFY Adjustment as a Result of Linguistic Hedge "Much" (k=1.5)

COMIMFFY Adjustment for +-Some
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0.9000-

0.8000
0.700 -Original

0.600COMMFFY
0.5000

0.400 -. . - ol

0.3000

0.1000

0.0000
1 12 23 34 45 56 67 78 89 100

Figure 30 COMMFFY Adjustment as a Result of Linguistic Hedge "Some" (k=1.25)
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COMMFFY Adjustment for +/- Little
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Figure 31 COMMFFY Adjustment as a Result of Linguistic Hedge "Little" (k=l.1)

Visually, these adjustments are very appealing. Although the aggregation method

does not involve a defuzzification step, one can be used to determine if the adjustment

procedure is working correctly by defuzzifying the adjusted COMMFFY and looking at

the resulting values. Table 19 shows that when the Center of Area Defuzzification

Method is used, the crisp value moves in the expected direction, based upon the change in

the COMMFFY, however, the change is very slight. If a different defuzzification method

is chosen, such as the Method of Heights Defuzzification Method, with an a-cut value of

0.5, a more satisfying result is seen (i.e., the crisp value shows more movement relative to

the original value). Depending on the amount of adjustment desired in the final, crisp

result of the methodology, the exponential parameter and the defuzzification method can

be adjusted accordingly.
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Table 9 Adjusted Defuzzification Values

COA Defuzzification Method MOH Defuzzification Method
"+" Adj No Adj "-" Adj "+" Adj No Adj "-" AdJ

Very 54.5716 54.0968 53.0683 52.9821 46.8112 11.8162

Much 54.4175 54.0968 53.5922 52.1435 46.8112 26.5651

Some 54.2911 54.0968 53.8475 51.1641 46.8112 38.8920
Little 54.1857 54.0968 53.9979 51.3308 46.8112 47.0258

5.5 CONTRIBUTION

All of the current uses of FCMs, including the FMEA FCM contributed by Bowles and

Pelaez, are limited to activating a concept and seeing which concepts result. Although

the FMEA work used the linguistic tags to describe the extent of the result, it stops there.

This work extends the use of the FCM-drawn inference to modify test-derived results.

Thus, taking the FCM a step further than previous work. Additionally, using the result of

the multiplication/thresholding operation as a mechanism to limit the scope of subsequent

steps in the methodology, allows larger and more complex FCMs to be considered than

would have been practical without this step.

This work also represents an advance in the state of the art in the test and

evaluation arena. Current analysis methods are limited to summarization techniques

based upon statistical concepts and offer no mechanism for extending results beyond

those observed in the laboratory or test range. However, the aim of Operational Test and

Evaluation is to simulate an operational environment, which necessarily included factors

that are not quantifiable or controllable. Therefore, a mechanism is desperately needed

which will allow information that is commonly known to affect the system performance

to be brought into the decision-making process. The methodology outlined here will

provide that mechanism.
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CHAPTER SIX

AGGREGATION METHODOLOGY

6. AGGREGATION METHODOLOGY

The final stage of processing in the Intelligent Hierarchical Decision Architecture is that

of aggregating the system performance across all the logical divisions of the system

performance to form an overall assessment of system performance. In the testbed case,

this involves taking the system performance demonstrated against each individual threat

system and aggregating it across all the threat systems to develop an assessment of the

jamming system's overall performance. There are several options available for

performing this aggregation. After a brief review of the current literature's treatise on

aggregation operators, a discussion of the Dempster-Shafer Theory of Evidential

Reasoning is turned to. It will be shown that the Dempster-Shafer theory, originally

developed by Dempster in the early 1960's [37] and extended by Shafer in the mid-

1970's [38], will provide the ideal mechanism for combining the system performance

information into its final aggregated form -- providing a probabilistic bound on the

performance at the task-accomplishment level. This system performance bound can then

be provided to the decision-maker, as a truly meaningful piece of information to aid in the

decision-making process.
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6.1 CURRENT AGGREGATION METHODS

Aggregation operators, used to combine two or more fuzzy sets into a single set are

represented by a function h defined by [13]

h: [ 0,1]n --- [0,1], n >! 2 ( 6-1 )

where n is the number of aggregation sources. The following properties are given which

must be satisfied in order for an operator to be considered an aggregation operator.

Definition: A function, h, is called an aggregation operator if it satisfies

the following properties.

(AP1) h(, 0, ..., 0) = 0 and h(1, 1, ... , 1) = 1, that is, h is bounded;

(AP2) For any pair (ail iE Nn) and (bil iG Nn), where ai E [0,1] and bi E

[0,1 ], if ai >- bi for all iE Nn, then h(ail iE Nn) > h(bil iE Nn), that is, h is

monotonic nondecreasing in all its arguments;

(AP3) h is a continuous function

(AP4) h is a symmetric function in all its arguments, that is, h(ail iE Nn) =

h(ap(i)l iE Nn) , for any permutation p on N,.

where Nn denotes the set of all integers from 1 through the value of the

subscript; that is, N n = { 1, 2, ... , n}.

The current literature on decision-making aggregation methods focus on two

classes of methodologies: aggregation of sensor information and preference ordering

among alternatives. Both categories share similar traits, including the decision of which

111



aggregation operator is most appropriate for their task. The discussion that follows

highlights one work from each class to illustrate the work that has been accomplished in

this area. Following that discussion, Section 6.1.1 discusses other options that might be

available for the aggregation task. Section 6.2 and Appendix D include discussions of the

Dempster-Shafer theory and an examination of its applicability to needs of this work.

Finally, in Section 6.3, the Intelligent Hierarchical Decision Architecture's Aggregation

Methodology is discussed.

Loskiewicz-Buczak and Uhrig [39] use information fusion based upon fuzzy sets

operations to analyze vibration signatures for fault detection applications. In their work,

they conclude that human decisions and evaluations almost always show some degree of

compensation. They suggest that the generalized mean operator very closely matches the

human decision making process. The generalized mean is defined by

n

(XI2...WXIY (6-2)
i=1

The rate of compensation of this operator is controlled by the parameter, p, and the

relative importance of the factors is given by the weights, wi.

They find the generalized mean an attractive alternative for two of its properties [40]

" min(a,b) < mean(a,b) < max(a,b)

* mean increases with an increase in p; thus, by varying the value of p from -- and +00,

one can obtain all values between min and max.

In their sensor fusion work, they suggest using the generalized mean aggregation

operator and performing an adaptive, on-line fusion methodology. First, they begin with

a large value of p and decrease the value of p as the number of sensors increase, thus,
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becoming more selective as more information is introduced into the system. As each

additional sensor's information is considered, it is fused with the existing information,

then a confidence factor is calculated. If the information from the current sensor does not

increase the confidence factor, it is not included in the decision process. A final decision

on fault identification is made by the Method of Heights Defuzzification Scheme.

The other class of applications of decision-making aggregation methods is

illustrated by the work of Kaymak and van Nauta Lemke [41] to develop a method of

preference ordering among alternatives. After evaluating the various t-norms (i.e., fuzzy

conjunctive operators, Boolean logic AND (e.g., minimum)) and t-conorms (i.e., fuzzy

disjunctive operators, Boolean logic OR (e.g., maximum)) available as aggregation

operators, they determine that the compensatory operators, which are a combination of a

t-norm and a t-conorm are the most appropriate for modeling the human information

aggregation method used to preference order among given alternatives.

It is evident from these two brief descriptions that most of the research to date in

this area has focused on determining an appropriate operator to combine the information

at hand. Additionally, neither of these application areas completely address the OT&E

aggregation task. Information gathered on certain aspects of the system performance

cannot simply be disregarded, as was suggested in the sensor fusion work, for all of it is

relevant to the decision being made. This work is not trying to rank order any alternatives

associated with the system performance, so the information on preference ranking,

although insightful, does not help with this task. Finally, in applying these aggregation

schemes to the testbed case data, it became evident that the information content was

watered down to the point where it would be difficult to make a decision. In viewing the

results derived from these aggregation schemes on the testbed case data, Major General

George Harrison's 8 reaction was "Basically, you are not telling me anything [42]." Figure

32 and Figure 33 are the results from performing the aggregation of the COMMFFYs

8 Major General George B. Harrison is the current (1993 - current) commander of the Air Force Operational

Test and Evaluation Center -- the Air Force's operational test and evaluation organization.
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from the testbed case using the methods described above. The aggregation is carried out

using the minimum, maximum, and generalized mean operators on the best-case and

worst-case COMMFFYs separately. The figures illustrate the inability of these

aggregation methods to distinguish between conflicting or confirming information -- they

treat everything equally, resulting in information of dubious worth.

Best-Case Performance Aggregation Results
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Percent Reduction in Probability of Kill

Figure 32 Best-Case Performance Aggregation Results
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Worst-Case Performance Aggregation Results
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Figure 33 Worst-Case Performance Aggregation Results

Because the raw test data in the testbed case indicated such diverse performance

against the individual threat systems, the aggregation methods shown here are very

unsatisfying. The minimum operation yields a result of zero across the entire domain.

Thus, even through the Jammer-X system performed quite well against one of the threats

and acceptably well against the remainder, this aggregation scheme indicates the

intersection of the performance across the threats has no merit. On the other hand, the

maximum operation using the fuzzy union of the performance yielded an overall

performance function that is overly optimistic. Finally, the generalized mean provides

middle of the road membership function values, but again because of the diversity of the

original data, ranges over the majority of the domain, resulting in very little useful

information.
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Are there other aggregation alternatives?

6.1.1 OTHER AGGREGATION OPTIONS

A neural network consisting of nodes used to form a weighted sum of the input values,

which then passes through a nonlinearity, could be used to aggregate the individual

performance COMMFFYs to an overall performance COMMFFY [43]. However, the

use of a neural network for this application presents a number of problems. First, the

neural network's "black-box" operation mode is not desirable for this application. One of

the goals in the development of this analysis methodology is to develop a method where

all the decisions can be justified, and the reasoning process can be understood intuitively.

Using a neural network at this stage would destroy the intuitive appeal of the Intelligent

Hierarchical Decision Architecture developed to this point. Second, and more

importantly, the transformation from individual system performance to overall system

performance is not well understood, and input/output data representative of it, which

could be used as training data for the neural network, is not readily available. Without

training data available to train the network for its desired performance, it would be

impractical to pursue this option. Therefore, the neural network, although a tool that

could be applied to accomplishing this portion of the task, will not be considered further.

A Fuzzy Associative Memory could be developed to relate various aspects of

system performance to overall system performance for the final aggregation step, similar

to the FAM used in the second stage of the hierarchy to aggregate MOFP-level

performance to MOTA-level performance. The FAM structure provides an appealing

method of tracking the decisions being made through the decision-making process.

However, a problem similar to that highlighted in considering the neural network for this

application, is the lack of information relating performance at the two levels in question.

Where would the information used to develop the FAM come from? For the testbed case,
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mission-level models exist which allow the user to define lethality values for each threat,

then fly a mission through the defined scenario. These models could be used to define the

individual-performance to aggregated-performance relationships for an application like

the testbed case. However, in general, these types of models do not exist and the type of

information that would be needed to develop a FAM for the aggregation task is not

available. Therefore, as with the neural network option, this option is abandoned due to a

lack of information available to implement it.

Another approach for aggregating the information would be to defuzzify each

individual MOTA-level COMMFFY, then perform a weighted averaging of the crisp

values to come up with a final result. In using this approach, although the defuzzification

scheme would consider the information contained within each individual COMMFFY,

performing the defuzzification operation too early in the process diminishes the rich

information content resident in the fuzzy distribution. Additionally, for the testbed case,

previous attempts at developing a linear weighting scheme for Electronic Combat system

performance have met with criticism from the Electronic Combat community [44].

Thus, it can be seen that neither neural networks, Fuzzy Associative Memories,

nor a defuzzified value linear-weighting scheme are appropriate for this work. The work

done in the sensor fusion and preference ordering areas, also do not quite fit the bill. The

Dempster-Shafer (D-S) Theory of Evidential Reasoning, introduced by Dempster in the

1960's and extended by Shafer, provides a generalization to the Bayesian reasoning

framework. The D-S method will prove to be an excellent method of aggregating the

information across the logical divisions of the task level system performance and

providing a probabilistic bound on the system performance for the decision-maker.
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6.2 DEMPSTER-SHAFER THEORY

The Dempster-Shafer Theory is a generalization of the Bayesian probabilistic reasoning

approach. It allows the hypotheses being considered to be subsets of an overall universe,

in addition to the singleton hypotheses allowed by the Bayesian approach [45]. The D-S

approach represents knowledge as a mapping of knowledge sources in the observation

space, or bodies of evidence, to hypotheses in the conclusion space [46]. The D-S theory

will serve as the basis for the Intelligent Hierarchical Decision Architecture's

Aggregation Methodology. Appendix D contains an overview of the basic definitions

associated with the Dempster-Shafer Theory. The Appendix also provides an example of

Dempster's Rule of Combination. The discussion here now focuses on an illustration of

how the Dempster-Shafer basic probability assignment can be derived from fuzzy sets,

then on a discussion of the use of Dempster' s Rule of Combination to perform the final

aggregation of the Intelligent Hierarchical Decision Architecture's processing.

6.2.1 DERIVING BPA VALUES FROM Fuzzy SETS

Several researchers have suggested a link between the uncertainty associated with fuzzy

sets and the knowledge combination functions of the Dempster-Shafer theory [47, 48] in

an effort to provide a seamless method of combining uncertain information. In those

works, the consideration of the fuzzy set as a possibility distribution suggested by Zadeh

in [49] is used to define the Dempster-Shafer basic probability assignment for the fuzzy

set. The bpa is subsequently used to define the belief and plausibility functions, and as

the basis for the combination in extensions of the Dempster's Rule of Combination.

If the elements within the fuzzy set are nested, that is, arranged such that they

form subsets
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A 1 D A 2 -D ... = A,, then the bpa is calculated from the possibility distribution as [47]

m(Ai) = ri - i-1  (6-3)

where ig = inf poss(x). Using the a-cut level to decompose the fuzzy set, a natural
xEA i

nesting results and the 7i becomes the alpha cut level, therefore, the bpa is formed from

m(Ai) = a i - ai_ 1  ( 6-4 )

Once the bpa is defined, the belief and plausibility functions are defined as [48]

Bel(B) Im(A)X_[a i -- ai-]x inf MB(X) (6-5)
A a i  xEAa

Pl(B) = Xm(A) [a i - ai-l]x sup /B(x) (6-6)
A a i  xeAa

The Rule of Combination is extended for use with fuzzy sets in a two step

operation, consisting of combining the bpa' s using a cross-product operation followed by

a normalization step that brings the maximum value of the fuzzy set to unity. First the

fuzzy bpa's are combined using the following [48]

m' 12 (C) = m1 M m 2 (C) = Iml(A)m2 (B) (6-7)
AnB=C

where C is an unnormalized intersection of the fuzzy sets A and B and m' is the

unnormalized, combined bpa. Then the normalization process is applied as [48]
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ymaxtc(xi)m' (C) (6-8)
N [ m ](D ) = =D X'

1- X(1 - max Lc (xi))m' (C)
CcT 

xi

where C is the normalized set associated with C that is characterized by the following

membership function

( lc(X) (6-9)//()maxy-c(x)

and T is the hypothesis space, formed by a set of mutually exclusive and exhaustive

hypotheses of the form IF X is si THEN Y is Ai where si is a piece of evidence and Ai is a

fuzzy subset in the hypothesis space T.

6.3 THE IHDA AGGREGATION METHODOLOGY

The Dempster-Shafer Theory of Evidential Reasoning will serve as the basis for the final

stage of the Intelligent Hierarchical Decision Architecture to aggregate the information

across all the logical divisions of the system-under-test's performance. In the case of the

testbed case, the aggregation is across all the threat systems against which the Jammer-X

was tested. The final aggregated solution gives a system performance bound on the

Reduction in Pk capability of the Jammer-X system for all the threat systems that the

system is likely to encounter in its operational use.

The Intelligent Hierarchical Decision Architecture's Aggregation Methodology

will use the work described above as a guide. The aggregation will be carried out in two

parallel operations. All the best-case COMMFFYs resulting from the best-case FCM

adjustment of the previous step will be aggregated together to form a best-case

probabilistic bound on the system performance. Likewise, all the worst-case
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COMMFFYs resulting the from the worst-case FCM adjustment will be aggregated

together to form a worst-case probabilistic bound on the system performance. The

Intelligent Hierarchical Decision Architecture's Aggregation Methodology entails the

following steps.

Step 1. In order to make the processing in this stage manageable and the results

intuitively meaningful, the aggregation is carried out at the Basic Membership Function

level. Therefore, the first step entails condensing the information contained within the

COMMFFYs generated from the first three stages of the Intelligent Hierarchical

Decision Architecture back to the Basic Membership Function level. This is

accomplished by looking at the universe of discourse associated with each BMF and

selecting the maximum value within the region to represent the membership function

value for that BMF.

Step 2. Once the BMF values for each logical division are defined, nested sets are

formed by taking a-cuts at each distinct membership function value.

Step 3. With the x-cut level sets defined, the basic probability assignment associated

with each o-cut level set is determined using ( 6-4).

Step 4. The combination and normalization are carried out with these basic probability

assignment values using the intersection tableau method illustrated in Appendix D. The

intersection tableau method incorporates the calculations given in ( 6-7 ) and ( 6-8 ) in a

more illustrative manner, therefore, it has been chosen for use here.

Step 5. Finally, the belief and plausibility functions are calculated using the equations

given in Appendix D. These function values are used to form the belief interval, the final
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information that is supplied to the decision-maker to aid in his decision-making process.

The belief interval takes the form [101]

[Bel(A), Pl(A)] (6-10)

giving a lower and upper bound on the probability of the hypothesis. The Degree of

Certainty is also calculated and provided to the decision-maker, as an indication of the

believability associated with each choice.

6.4 TESTBED CASE RESULTS

The Aggregation Methodology described in Section 6.3 is now illustrated using the

testbed case. Each step in the methodology is illustrated for a portion of the testbed case,

with complete results shown in Appendix F.

Step 1. In this step the information contained in the adjusted, task-accomplishment level

COMMFFY is transformed back to a representative value at the Basic Membership

Function level. This is accomplished by taking the maximum value of the COMMFFY

within the domain represented by each BMF. The results of this operation for the best-

case adjustment are shown in Table 10.
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Table 10 BMF Membership Function Values for Best-Case Adjustment
COMMFFYs

BMF Tag BMF # Threat A Threat B Threat C Threat D
LO 0 0.00 0.00 0.00 0.00

LOMEDLO 1 0.00 0.00 0.71 0.71
MEDLO 2 0.00 0.00 0.94 0.84

HIMEDLO 3 0.00 0.71 0.98 0.93
MED 4 0.00 0.93 0.71 0.93

LOMEDHI 5 0.00 0.93 0.00 0.77
MEDHI 6 0.71 0.71 0.00 0.75

HIMEDHI 7 0.96 0.00 0.00 0.82
HI 8 0.99 0.00 0.00 0.71

Step 2. The next step is to form a-cut level sets for each distinct membership function

value. This step is illustrated using the BMF membership function values for Threat D

shown in Table 10, the complete results are given in Appendix F.

O.71 = {1,2,3,4,5,6,7,8}

00.75 = {2,3,4,5,6,7}

Do.77 = {2,3,4,5,7}

00.82 = {2,3,4,7}

00.84 = {2,3,4}

00.93 = {3,4}

Step 3. With the a-cut level sets defined, the basic probability assignment value

associated with each a-cut level set is determined as shown below for the sets given in

Step 2 above.

m( D0 o.7 1 ) = 0.71
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m( D 0 .7 5 ) = 0.04

m( D 0 .7 7 ) = 0.02

m( D0 2 ) = 0.05

m( D. 84 ) = 0.02

m( Do.9 3 ) 0.09

m( E ) =0.07

Note that the remainder of the evidence not committed to any of the a-cut level sets is

assigned to the universe of discourse.

Step 4. The combination and normalization are carried out with these basic probability

assignment values using the intersection tableau method illustrated in Appendix D. The

method is illustrated below in combining the evidence associated with Threat A and

Threat B, with complete results given in Appendix F.

Table 11 Intersection Tableau for Testbed Case Threat A and Threat B

m(Ao. 71) = 0.71 m(Ao.96) = 0.25 m(Ao.99) = 0.03 m( 0) = 0.01
Ao. 71 = (6,7,8] Ao. 96 = [7,8) Ao.9 9 = [7,8]

m(Bo. 71) = 0.71 ml61 0.5041 m{Q} = 0.1775 m{O} = 0.0213 m{3,4,5,6} =

Bo.71 = [3,4,5,6] 0.0071
m(Bo. 93) = 0.22 m{0} = 0.1562 m{0} = 0.0550 m{O} = 0.0066 m{4,5} = 0.0022

Bo.93 = (4,5]

m( 0) = 0.07 m{6,7,8} = m{7,8} = 0.0175 m{8} = 0.0021 m( ) =0.00071__ _ 0.0497 m I

From this tableau, the values of the bpa for all the subsets shown here are calculated and

adjusted by the value of the bpa assigned to the empty set, by normalizing by 1-K, where

K is the sum of the bpa's assigned to the empty set.

K = 0. 1775 + 0.0213 + 0.1562 + 0.0550 + 0.0066 = 0.4166; 1-K = 0.5834
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m{6} = 0.5041 / 0.5834 = 0.8641

m{8} = 0.0021 / 0.5834 = 0.0036

m{4,5} = 0.0038

m{7,8} = 0.0300

m{6,7,8} = 0.0852

m{3,4,5,6} = 0.0122

m{ 0 } = 0.0012

Then these values are carried forward to the next tableau, which combines them with the

evidence from Threat C. Then the combined A,B, and C values are combined with the

evidence from Threat D. The complete results are shown in Appendix F.

Step 5. Finally, the belief and plausibility functions and the Degree of Certainty are

calculated. The function values are used to form the belief interval, the final information

that is supplied to the decision-maker to aid in his decision-making process. The results

for the best-case bpa, belief function, plausibility function, and the Degree of Certainty

are given in Table 12. The bpa values came from the final tableau calculations where the

combined Threats A, B, and C information was combined with Threat D information (see

Appendix F). The belief and plausibility function values are calculated, for example for

Bel{2,3} and PI{2,3} as

Bel{2,3} = m{2} + m{ 3} + m{2,3} = 0 + 0.1037 + 0.0078 = 0.1114

P1{2,3} = m{3} +m{2,3} +m{3,4} +m{2,3,4} +m{3,4,5} +m{l1,2,3,4} +m{3,4,5,6}

+ m{2,3,4,7} + m{2,3,4,5,7} + m{2,3,4,5,6,7} + m{ 1,2,3,4,5,6,7,81 + m{ }

= 0.4127
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Table 12 Basic Probability Assignment, Belief and Plausibility Function, and
Degree of Certainty Values for Best-Case Aggregated System Performance

Basic Degree of
Hypothesis Probability Belief Plausibility Certainty

Assignment

{1} 0.0000 0.0000 0.0000 -1.0000
{3} 0.0000 0.0000 0.0000 -1.0000
{4} 0.0000 0.0000 0.0000 -1.0000
{5} 0.9621 0.9621 0.9925 0.9242
{7} 0.0007 0.0007 0.0379 -0.9985

{1,2} 0.0000 0.0000 0.0000 -1.0000
{1,3} 0.0000 0.0000 0.0000 -1.0000
{4,5} 0.0000 0.9621 0.9925 -0.0379
{5,7} 0.0015 0.9644 1.0000 -0.0341

{1,2,3} 0.0000 0.0000 0.0000 -1.0000
{3,4,5} 0.0000 0.9621 0.9925 -0.0379
f 6,7,8} 0.0068 0.0075 0.0379 -0.9857

{ 1,4,5,7} 0.0000 0.9644 1.0000 -0.0356
15,6,7,8} 0.0288 0.9712 1.0000 0.0000

{ 1,3,4,5,7} 0.0000 0.9644 1.0000 -0.0356
{0,1,2,3,4,5,6,7,8} 0.0000 1.0000 1.0000 0.0000

{E} 0.0000 1.0000 1.0000 0.0000

These probability bounds would be reported to the decision-maker as the final

outcome of the OT&E, adjusted for factors that could not be tested or controlled during

the testing. The table should be interpreted as follows. The hypotheses listed in the left

column are the possible Basic Membership Functions that could answer the question

"Which Basic Membership Function most likely characterizes the aggregated and

adjusted best-case system performance of Jammer-X?". The Degree of Certainty value

points to the hypothesis that has the most confirming evidence and the least non-

confirming evidence. As mentioned in the definition of this measure, it ranges [-1, + 1]

with -1 indicating total disbelief in the hypothesis and + 1 indicating total belief in the

hypothesis. From the values listed in Table 12, it can be seen that most of the evidence is

pointing to a conclusion of BMF #5, the triangular shaped Basic Membership Function
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centered at 60% Reduction in Probability of Kill. The belief interval associated with this

hypothesis is [0.9621, 0.9925], indicating a very strong conclusion.

6.5 CONTRIBUTION

The Aggregation Methodology described in this chapter serves as the final stage in the

Intelligent Hierarchical Decision Architecture, which in its entirety provides advances for

both the Systems Analysis and Test and Evaluation arenas. The Intelligent Hierarchical

Decision Architecture provides a means to take low-level test data and aggregate and

synthesize it into information that is truly meaningful to the decision-maker. The

Aggregation Methodology, separate from the entire Intelligent Hierarchical Decision

Architecture, provides new methodologies for both the Systems Analysis and T&E

worlds.

In Systems Analysis, previous methods used to give a system performance bound

have been limited to statistical methods which typically depend more on sample size than

on information content for the size of the bound. Using the Dempster-Shafer Theory, the

need to use statistical measures to establish the system performance bound is eliminated,

building a bound whose size is based solely on the gathered information. Additionally,

the D-S theory allows the transformation of the information from the possibilistic realm

to the probabilistic, where decision-makers are more comfortable. This transformation is

made in the definition of the basic probability assignments using a-cuts of the fuzzy set

information, and the subsequent manipulation of the bpa's to form the final probabilistic

bounds.

In the area of Test and Evaluation, only ad-hoc methods have been developed to

date to allow aggregation of information to provide overall system performance

evaluations. For example, in the F-15 TEWS Operational Assessment, a color scheme

was used through which system performance against each threat was given a green,
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yellow, or red rating. Then, the overall system performance was determined by the test

team by looking at the spectrum of colors and making a judgment on overall system

performance [73]. In the OT&E of the Milstar Satellite Communication system, an

aggregation methodology was developed through which any failure of what was termed a

"critical" measure would cause the failure of the entire system. If other than critical

measures failed, a group of test team members got together to decide the relevance to

system performance [72]. In other OT&E programs, no attempt has been made to

aggregate system performance past the individual measured performance level -- the

individual results are reported and the aggregation method is left up to the decision-

maker. Clearly, a more systematic method, as suggested here, is needed to standardize

the analysis of OT&E data.
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CHAPTER SEVEN

CONCLUSION

7. CONCLUSION

In this dissertation, the Intelligent Hierarchical Decision Architecture has been

developed. It provides an intelligent method of analyzing Operational Test and

Evaluation data with the goal of providing meaningful information to decision-makers

based upon the low-level data gathered during the testing effort. This final chapter

concludes the discussion by comparing the methodology with currently available

statistical/probabilistic and M&S methods and providing an information-content measure,

based upon fuzzy entropy concepts that will be used to show that with the progression

through the processing of the Intelligent Hierarchical Decision Architecture the amount

of entropy (a measure of the inability to make a decision) in the system decreases.

Finally, this chapter closes with a review of the total work and a discussion of the overall

contributions that this work has made to the fuzzy logic theory, system analysis, and

Operational Test and Evaluation arenas. Also included is a discussion of future research

that should be conducted in order to further the work accomplished here.
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7.1 COMPARISON WITH CURRENT METHODS

7.1.1 FUNCTIONAL PERFORMANCE LEVEL DATA MANIPULATIONS

The analysis method proposed in this work provides a means of drawing conclusions at

the operational task level based upon system performance characteristics demonstrated at

the functional performance level. How does this method compare to those currently

being used, or those that could be proposed based completely upon statistical or

probabilistic techniques?

The current analysis methods of the operational testing community, as discussed

in Chapter One, are limited to standard statistical methods. Using these methods, the data

gathered at the functional performance level can be analyzed, and conclusions drawn

based upon the pass/fail criteria at that information level. The most appropriate statistical

tool for the analysis of the data provided in the testbed case would be Statistical

Hypothesis Testing, yielding a statement on pass/fail against the requirement and a

measure of the degree of plausibility associated with that statement, in the form of a p-

value. The p-value gives a probability associated with the extremity of the current

observation. That is, if the experiment were repeated 100 times, only p of the trials

would result in a value as extreme as the current result. Therefore, a small value of p

points to the implausibility of the hypothesis. A rough guide to interpreting the p-value is

given as [58]:

* not significant if p > 0.10

* mildly significant if p 0.10 but p > 0.05

* significant if p 0.05 but p > 0.01

• highly significant if p 0.01
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where significance means that there is evidence indicating a rejection of the null

hypothesis.

The calculations associated with the analysis of the testbed case data are

illustrated below for two of the Measures of Functional Performance, one measure where

the requirement is given in "greater than or equal to" form and the other where the

requirement is given in "less than or equal to" form. The final result of the analysis that

would be presented to the decision-maker, would be a collection of this information,

usually in the form shown in Table 13.

Illustrating the calculations associated with MOFP #1, Threat D, (see Appendix F

for a listing of the raw data), the hypothesis being tested is:

Ho: Reduction in Hits (RIH) > 50%

H1 : Reduction in Hits (RIH) < 50%

Using a Student-t distribution, due to the small sample size, the statistical test would

reject Ho if t < -c where t = -- and c, the critical value, is calculated as Pr(t > c) = a,

where alpha is the desired risk of making a Type I error.

Using a= 0.10 and the t-distribution, then c = 1.383. With n = 10, X =55.65, s =

15.98, the result is t = 1.1181. Thus, the outcome is to fail to reject Ho (i.e., accept Ho)

because t > -1.383. The associated p-value, the quantitative measure of the plausibility of

the hypothesis, is p = 0.87, a very strong indication that the null hypothesis should be

accepted.

To illustrate the calculations associated with the one-sided hypothesis when the

requirement is such that the value should fall below it, examine the analysis of MOFP #6,

Threat D, where
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Ho: Response Time < 10 seconds

Hi: Response Time > 10 seconds

The only change is the statistical test, where now the test rejects Ho if t > c.

Using a one-sided test with a = 0.10, again, c = 1.383. With n = 10, X= 8.38, s =

3.65, the result is t = -1.40. Thus, this result causes a failure to reject Ho (i.e., accept Ho)

because t < 1.383. The associated p-value, is p = 0.42, again, indicating a very strong

conclusion to accept the null hypothesis.

The information provided to the OT&E decision-maker, has typically taken the

form of a summary chart illustrating the pass/fail determinations at the functional

performance level determined from the hypothesis testing. The information provided in

the chart typically is given in the form of red, yellow, or green ratings -- indicating a

relative degree of acceptance of the hypothesis in question. Various criteria have been

established for the color-coding of the information provided within the chart (i.e., what

constitutes a red, yellow, or green rating) but consistently, the information provided to the

decision-maker stops at the level of providing pass/fail determinations against each

Measure of Functional Performance and logical system division that was examined

during the testing effort. A sample chart, giving pass/fail determinations based solely

upon the results of the hypothesis testing is illustrated in Table 13. This table also

illustrates the associated p-values so the decision-maker can determine the confidence

associated with the decision-making.
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Table 13 MOFP/Threat Pass/Fail Determinations with p-value

MOFP #1 MOFP #2 MOFP #3 MOFP #4 MOFP #5 MOFP #6
Threat A Pass Pass Pass Pass Pass Pass

(p=l) (p=l) (p=l) (p=l) (p=l) (p=l)
Threat B Pass Pass Pass Pass Pass Pass

(p=l) (p=l) (p=l) (p=l) (p=l) (p=l)
Threat C Fail Fail Fail Fail Fail Fail

(p=O) (p=O) (p=O) =o) (p=O) (P=O)
Threat D Pass Pass Pass Pass Pass Pass

I (p=0.87) (p=0.68) (p=0.53) (p=0.50) (p=0.4 6 ) (p=0.4 2 )

The other method, frequently used within the OT&E community to present the functional

performance level summary information to the decision-maker is to construct a color-

coded decision chart that examines the test data's mean surrounded by an associated

confidence interval. If the requirement falls completely to the "correct" side of the

confidence interval the system is given a green rating, if the requirement falls completely

to the "wrong" side of the confidence interval the system is given a red rating, and if the

requirement is contained within the confidence interval a yellow rating is used. Using

this method with the testbed case, the information given to the decision-maker as a result

of the testing effort would be as illustrated in Table 14. The decision-maker would then

make his decision based upon the predominant color in the chart.

Table 14 Color-Coded Decision Chart For Testbed Case Results

MOFP #1 MOFP #2 MOFP #3 MOFP #4 MOFP #5 MOFP #6
Threat A Green Green Green Green Green Green
Threat B Green Green Green Green Green Green
Threat C Red Red Red Red Red Red
Threat D Yellow Yellow Yellow Yellow Yellow Yellow

133



Other statistical methods could have been applied to the data at this point in the

analysis, providing alternate means of drawing conclusions as to the significance of the

testing outcomes. These other methods might include such approaches as nonparametric

statistics, where conclusions can be drawn without making assumptions on the underlying

statistical distribution of the data [50]; sequential methods where the statistical

hypotheses are examined after each observation, or group of observations, and a

determination is made to accept or reject the hypotheses or reserve judgment until more

data are collected [5]; or analysis of variance techniques where conclusions are drawn as

to the significance of the outcome based upon a comparison to the variance in the

process. 9 However, these methods are limited to drawing conclusions at the level where

data are available, they do not provide a mechanism for extrapolating to higher

information levels where data cannot be gathered.

7.1.2 TASK ACCOMPLISHMENT LEVEL INFORMATION GENERATION

The current analysis methods used within the operational testing community end with the

statistical inference methods illustrated in Section 7.1.1, requiring the decision-maker to

draw conclusions from the pass/fail information provided. Are there other approaches

that could be applied to allow conclusions to be drawn at the higher information content

levels?

Probabilistic-based methods, such as Bayesian Inference or Dempster-Shafer

Theory might offer an analysis mechanism. Using the Bayesian approach, the conditional

probabilities that relate each of the functional performance measures to the task

accomplishment measure could be defined, then the methods of combining the evidence

suggested by the Bayesian framework could be used to draw conclusions.

9 The data collected from the testbed case does not lend itself to an analysis of variance approach, where
comparisons of various alternatives yield statements on the significance of one alternative over the other.
The original test design for the Jammer-X system would have to have considered the ANOVA techniques
and gathered different data to facilitate that type of analysis.
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To illustrate this methodology on the testbed case, first, assume independence

among the functional performance measures, then, define hypotheses and divisions of the

evidence space. Then a matrix is derived that relates each level of the measures of

functional performance with each hypothesis. An excerpt of the matrix, using the

independence assumption, for the testbed case might look like [51]:

Hi: Pk performance is well above the requirement

H2: Pk performance is slightly above the requirement

H3: Pk performance is slightly below the requirement

H4: Pk performance is well below the requirement

Each piece of evidence (measure of functional performance) would also be divided into

these four hypothetical cases, such that:

el: MOFP #1 performance is well above the requirement

e12 MOFP #1 performance is slightly above the requirement

e46 MOFP #6 performance is well below the requirement

Using this notation, the matrix of conditional probabilities is formed as:

1 2 6
el el ... e4

H1  P(e1
11 H1 ) P(e121 H1 ) ... P(e4

61 H1 )

H2  P(el 11H2 ) P(e] 21 H2 ) ... P(e4
61 H2 )

H 3  P(e'I H 3 ) P(e21IH3 ) ... P(e461IH 3 )

H 4  P(e'I H 4 ) P(e12, H 4 ) ... P(e 461 H 4 )
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Then, assuming conditional independence with respect to each hypothesis, the overall

belief in the i-th hypothesis is calculated from

N

P(HiI e1,... eN) P(Hi) l-lP(eklHi) (7-1)
[P(el,...eN)] k=1

The issues with adopting this approach are listed below.

" First, although a method of defining the transformational relationships between the

functional performance level and the task accomplishment level used in the Fuzzy

Associative Memory was determined, the definition of these relationships within the

Bayesian framework requires a far more rigorous approach -- one for which the

amount of information available within the OT&E context will seldom yield.

" Second, the combination of information within the Bayesian framework assumes

independence between the factors -- an assumption that is severely violated for the

case of the OT&E data where a series of interrelated measurements on a single system

are taken.

* Third, if the multi-valued approach to knowledge combination is adopted, a matrix

consisting of all the combinations of possible outcomes and possible test conditions

would have to be developed. Just considering four values for each functional

performance measure, and four outcomes for the task accomplishment level (i.e., a

much courser division of the hypothesis space than was incorporated in the fuzzy-

based approach), the matrix of probabilities would contain 46 = 4096 elements. This

combinatorial explosion problem within the fuzzy framework was dealt with using

the reduction theorem, however, in the probabilistic case, unless the (unrealistic)

independence assumption is made, no such shortcut exists.
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* Fourth, most of the information necessary to carry out this calculation cannot be

derived from the information gathered during an OT&E. For example, the P(ejkI Hi)

contained within the matrix, would have to be defined using some sort of a heuristic

approach since data cannot be gathered to provide these probabilistic assessments; the

P(Hi) value would have to be arrived at heuristically, or an assumption made that all

are equally likely, since testing cannot be carried out at that information level, and the

P(e1, ... e 6) could only be given a rough value based upon the limited sample gathered

the OT&E, with no method to determine if that sample is an adequate representation

of the population.

So, even though a probabilistic method is available to provide information at the

operational task level, the information needed to implement this method is seldom

available in the OT&E context. Therefore, abandoning the application of the

probabilistic-based methods, statistical model building techniques, such as regression

analysis might be suggested as an alternative to provide information at the operational

task level. Regression analysis provides a mechanism for building a model, which is

subsequently used to predict the value of a variable based upon the values of the predictor

variables contained in the model. This seems to offer the most promise as a means of

predicting future performance from the information gathered during the testing. The

problem with this approach is that an assumption has been made that measurements of

the system's performance at the task accomplishment level cannot be made, thus, data

necessary to build the model is not available

Another technique that could be suggested to perform the transformation from the

functional performance level to the task accomplishment level, might be the use of

Monte-Carlo simulation. If the assumption is made that the distribution of the functional

performance levels can be characterized by the test data, and further, that a functional

transform from the functional performance level to the task accomplishment level can be

defined; then a Monte-Carlo simulation technique to draw inferences on the task
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accomplishment level distribution could be used. This is done by repeatedly sampling

from the functional performance level distribution and determining the outcome due to

that measurement at the task accomplishment level. If this sampling is accomplished

repeatedly, a distribution of the measure at the task accomplishment level results. This

simulation could be accomplished with the information that could be derived from the

OT&E effort if the information to determine the functional transform from the functional

performance level to the task accomplishment level can be quantified and if the data

gathered during the OT&E are enough to characterize the underlying statistical

distributions.

For the testbed case, an assumption is made that the data gathered during the

testing are enough to characterize a normal distribution. A random sample is drawn from

those distributions and the transformations used to derive the Fuzzy Associative Map

rules (i.e., the curves derived from the ESAMS sensitivity runs) are used to transform the

drawn sample at the functional performance level to a representative sample at the

operational task level. This sampling and transformation process is repeated 1000 times

for each functional performance measure and the results are binned and normalized to

form a probabilistic distribution for each threat system. The results are shown in Figure

34 through Figure 37 below.
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Threat A Monte-Carlo
Simulation Results

1.00
S0.50+

0 0.00

Reduction in Probability of Kill

Figure 34 Percent Reduction in Probability of Kill Results for Threat A Derived
From Monte-Carlo Simulation

Threat B Monte-Carlo
Simulation Results

0

S 1.00
0.50+.

o 0.00

Percent Reduction in Probability of Kill

Figure 35 Percent Reduction in Probability of Kill Results for Threat B Derived
From Monte-Carlo Simulation
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Threat C Monte-Carlo
Simulation Results
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0.00 ,
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Figure 36 Percent Reduction in Probability of Kill Results for Threat C Derived
From Monte-Carlo Simulation
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Figure 37 Percent Reduction in Probability of Kill Results for Threat D Derived
From Monte-Carlo Simulation
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Figure 34 through Figure 37 illustrate that the trends in the original data, that were

also evident in the task-accomplishment level COMMFFYs, are also noticeable in these

probabilistic distributions. Therefore, this simulation method could be used as a

substitute for the methods proposed in the Intelligent Hierarchical Decision

Architecture's first two stages if the test data are such that statistical distributions can be

characterized from them, and if transformations from the functional performance level to

the task accomplishment level can be defined in a functional form.

7.1.3 FINAL INFORMATION AGGREGATION

Once the probabilistic distributions generated through the Monte-Carlo simulation have

been developed, they can be combined using the Dempster-Shafer Theory, forming a

single bound on the system performance for the decision-maker, similar to the

aggregation scheme used within the Intelligent Hierarchical Decision Architecture.

The issue encountered with this approach, especially for a situation such as the

testbed case where the information being combined is very diverse, is the possibility of no

overlapping regions in the hypothesis space. When there is no overlap the Dempster's

Rule combination techniques will not yield a solution. This can be illustrated with the

testbed case if the hypotheses are chosen as 10% intervals of the hypothesis space. The

result from the combination of this information is given in Table 15 through Table 17.

Table 15 Dempster's Rule Combination of Threat A and Threat B
(10% Hypotheses)

m{70-79}= m{80-89}= m{90-99}= m{100}= m{O}=
0.3500 0.2600 0.3800 0.01000 0.0000

m{40-49} = 0.0900 0.0315 0.0234 0.0342 0.0009 0.0000

m{50-59} = 0.2700 0.0945 0.0702 0.1026 0.0027 0.0000
m{60-69} = 0.1900 0.0665 0.0494 0.0722 0.0019 0.0000
m{70-79} = 0.4200 0.1470 0.1092 0.1596 0.0042 0.0000
m{80-89} = 0.0300 0.0105 0.0078 0.0114 0.0003 0.0000

mf{} = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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With this combination, K= 0.8452 and l-K= 0.1548, and the resulting combined basic

probability assignments are mAB{ 7 0-7 9 1 = 0.9496 and mAB{ 80-8 9 } = 0.0504. Then

combining this information with Threat D, the result is shown in Table 16.

Table 16 Dempster's Rule Combination of Threat A/B with Threat D
(10% Hypotheses)

m{70-79}= m{80-89}= m{®}=
0.9496 0.0504 0.0000

m{20-29}=0.0300 0.0285 0.0015 0.0000
m{30-39} = 0.0800 0.0760 0.0040 0.0000
m{40-49} = 0. 1400 0.1329 0.0071 0.0000
m{50-59} = 0.220 0.2089 0.0111 0.0000
m{60-69}= 0.2400 0.2279 0.0121 0.0000
m{70-79}= 0.2400 0.2279 0.0121 0.0000
m{80-89} = 0.0500 0.0475 0.0025 0.0000

m{O} =0.0000 0.0000 0.0000 0.0000

With the combination of Threat A/B with Threat D, K= 0.7696 and 1-K= 0.2304, and the

resulting combined basic probability assignments are mABD{70-7 9 1 = 0.9891 and

mABD{ 80- 89 } = 0.0109. Then, finally, combining this information with Threat C, the

result is shown in Table 29. In that table it can be seen that there is no overlap in the

hypotheses, therefore, no conclusions can be drawn on the overall system's performance.
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Table 17 Dempster's Rule Combination of Threat A/B/D with Threat C
(10% Hypotheses)

m{70-79}= m{80-89}= m{O}=
0.9496 0.0504 0.0000

m{0-9} = 0.0500 0.0475 0.0025 0.0000
m{ 10-19} = 0.0600 0.0570 0.0030 0.0000
m{20-29} = 0.0600 0.0570 0.0030 0.0000
m{30-39} = 0.220 0.2089 0.0111 0.0000

m{40-49} = 0.2000 0.1899 0.0101 0.0000
m{50-59}= 0.1700 0.1614 0.0086 0.0000
m{60-69} = 0.2500 0.2374 0.0126 0.0000

m{E} = 0.0000 0.0000 0.0000 0.0000

Rather than just abandoning the approach, by expanding the size of the hypothesis region

until there is overlap, the method will allow conclusions to be drawn. In the testbed case,

if the possible solution set is broken into 15% intervals, the combination across the

threats with yield a solution, as illustrated in Table 18 through Table 20.

Table 18 Dempster's Rule Combination of Threat A and Threat B
(15% Hypotheses)

m{30-45}= m{45-60}= m{60-75}= m{75-90}= me{O}=
0.0200 0.3500 0.5000 0.1300 0.0000

m{60-75} = 0.3300 0.0066 0.1155 0.1650 0.0429 0.0000
m{75-90} = 0.2900, 0.0058 0.1015 0.1450 0.0377 0.0000

m{90-100} = 0.38001 0.0076 0.1330 0.1900 0.0494 0.0000
m{O}= 0.00001 0.0000 0.0000 0.0000 0.0000 0.0000

The result of this first combination is K= 0.7973, 1-K=0.2027, giving combined basic

probability assignments of mAB{60- 7 5} = 0.8140 and mAB{7 5-9 0} = 0.1860.
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Table 19 Dempster's Rule Combination of Threat A/B with Threat C
(15% Hypothesis)

m{60-75}= m{75-90}= m{®}=
0.8140 0.1860 0.0000

m{0-15}= 0.0800 0.0651 0.0149 0.0000

m{ 15-30} = 0.0800 0.0651 0.0149 0.0000
m{ 30-45} = 0.3400 0.2768 0.0632 0.0000
m{45-60} = 0.2500 0.2035 0.0465 0.0000
m{ 60-75} = 0.2500 0.2035 0.0465 0.0000

m{} = 0.0000 0.0000 0.0000 0.0000

The resulting combinations from Table 19 yields mABC{ 60-7 5 } = 1.00. Finally

combining this result with Threat D, as in Table 20, the result is, again, mABCD{60- 7 5} =

1.00. The final aggregated result drawn from the Intelligent Hierarchical Decision

Architecture, indicated that the overall system performance at the operational task level

(percent reduction in probability of kill) was the Basic Membership Function centered at

60%, while the conclusion drawn here is that the final aggregated performance is

somewhere in the range between 60%-75%.

Table 20 Dempster's Rule Combination of Threat A/B/C with Threat D
(15% Hypotheses)

m{60-75}= m{®}=

1.0000 0.0000

m{ 15-30} = 0.0300 0.0300 0.0000
m{30-45} = 0.1500 0.1500 0.0000
m{45-60} = 0.2900 0.2900 0.0000
m{60-75} = 0.4100 0.4100 0.0000
m{75-90} = 0.1200 0.1200 0.0000

m{O} = 0.0000 0.0000 0.0000
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A side-by-side comparison of the final results from the statistical/probabilistic method

and the Intelligent Hierarchical Decision Architecture method is shown in Table 21.

Table 21 Statistical Methods Final Result Comparison

Intelligent
Method Standard Method Standard Method Hierarchical

(10% Hypotheses) (15% Hypotheses) Decision
Architecture

Final No solution 60-75% BMF Centered at 60%
Conclusion {Meets Regmt.} {Meets Regmt.}

Table 21 illustrates that when the Dempster-Shafer method is used with 10% hypotheses,

no solution results. When the Dempster-Shafer method is used with the 15% hypotheses

the same acquisition decision as derived from the Intelligent Hierarchical Decision

Architecture results. However, the solution region is much broader than that derived

from the IHDA method.

The difference in the results from the two methods can be attributed to two

factors. (1) The Intelligent Hierarchical Decision Architecture considered the effect of

other than the tested factors, thus providing the lower, and likely more realistic, estimate

of the system performance. (2) The Intelligent Hierarchical Decision Architecture's

conclusion is a more precise value (i.e., most likely 60%, then falling off in both

directions in accordance with the shape of the Basic Membership Function vs.

somewhere in the equally likely range of 60%-75%) because the gradual transitions

considered through the use of fuzzy set theory allowed more overlapping information to

be considered in the final aggregation step.
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7.1.4 STATISTICAL METHODS COMPARISON SUMMARY

The statistical/probabilistic methods described in Sections 7.1.1 and 7.1.2 can be used to

achieve most of the tasks accomplished by the Intelligent Hierarchical Decision

Architecture. However, two factors that were incorporated in the Intelligent Hierarchical

Decision Architecture cannot be handled with a purely statistical/probabilistic approach.

These two factors are: the incorporation of qualitative information at the functional

performance level and the consideration of the outcome due to factors that could not be

controlled or included in the testing effort. For example, in some cases, the information

gathered during an OT&E could consist partially, or wholly, of subjective information

gathered from surveys of the operational user. The development of a Composite Fuzzy

Membership Function can be easily accomplished using that type of information, while

statistical analysis of these data would be difficult, if not impossible. Second, the

incorporation of the untestable/uncontrollable factors that were brought into the analysis

through the use of the Fuzzy Cognitive Map, cannot be considered using a purely

statistical/probabilistic approach. The realism brought into the analysis process due to the

inclusion of these factors is a valuable means of helping the decision-maker make more

informed decisions. A side-by-side comparison of the tasks accomplished by the

Intelligent Hierarchical Decision Architecture, current OT&E practices, and other

available statistical/probabilistic techniques is given in Table 22.
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Table 22 Intelligent Hierarchical Decision Architecture / Statistical Methods
Comparison

Intelligent
Hierarchical Current OT&E Statistical /

Function Decision Analysis Methods Probabilistic
Architecture Method

Method
Manipulate raw data Clustering Hypothesis Testing, Hypothesis Testing1° ,

Method Analysis of Variance, Analysis of Variance,
Nonparametric Nonparametric
Statistical Tests, etc. Statistical Tests, etc.

Transform from Fuzzy N/A Bayesian Inference,
functional performance Associative Dempster-Shafer
info level to task Memory Theory, Monte-Carlo
accomplishment info Simulation
level
Consider factors not Fuzzy N/A N/A
tested/controlled Cognitive Map
Aggregate across logical Aggregation N/A Dempster-Shafer
divisions of system Method Theory
performance

Though it can be seen that statistical/probabilistic approaches can be used to

accomplish some of the same analysis tasks that the Intelligent Hierarchical Decision

Architecture does, they fall short in a number of ways, namely:

Current OT&E analysis methods use statistical techniques to drawn conclusions at the

information level where data are gathered, providing the information to the decision-

maker, and requiring that he aggregate the information on his own.

10 The methods shown in the table in italics have been used in this section with the testbed case data. The

final result is essentially the same as that derived from the Intelligent Hierarchical Analysis Structure's
methodology.
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" Probabilistic-based methods, such as Bayesian Inference or the Dempster-Shafer

Theory could be used to combine information and generate information at the

operational task level, however, the information needed to calculate these

probabilities, in general, does not exist in the OT&E context.

" The methods used within the probabilistic framework to deal with the combinatorial

explosion problem require that the measures of functional performance be

independent -- an assumption that is strongly violated with the OT&E data.

* The Monte-Carlo simulation technique requires (1) that enough test data be gathered

to characterize the statistical distributions from which the random samples are drawn,

and (2) a functional transformation from the technical performance level to the task

accomplishment level, to allow distributions to be generated at the task level based

upon the random draws from the functional performance level distributions.

" When the system performance demonstrated against the logical divisions is diverse,

the aggregation method provided by Dempster's Rule of Combination can fail to yield

information for the decision-maker.

" No statistical/probabilistic methods exist that would allow the consideration of

qualitative data or factors that were not included or controlled during the testing

effort.

The advantage to the statistical-based methods appears in the first stage, where

well-established techniques can be used to manipulate the raw test data and draw

conclusions based upon the data. The statistical methods also provide well-understood

means of defining the uncertainty associated with the conclusions, in the form of p-values

or confidence intervals. However, from that point forward, the advantage falls to the
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Intelligent Hierarchical Decision Architecture's methodology where the ability to easily

draw conclusions at higher information levels, deal with qualitative data, draw

conclusions when transformations between information levels can only be described

heuristically, and bring added realism into the decision-making process make it well

suited for the analysis tasks of the operational testing community.

7.1.5 MISSION-LEVEL MODEL COMPARISON

Current methods used within the OT&E community to provide high-level answers to

decision-makers involve the use of mission-level models. These models are used to

simulate the engagements between aircraft and threat systems in a representative

operational scenario, such as the one shown in Figure 38.

Figure 38 Representative Electronic Combat Operational Scenario
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From these simulated engagements, the aircraft's probability of survival can be

calculated. By running the engagement, first without the aircraft's jamming system

operating, then a second time with the jamming system operating, the model can give a

change in the survival rate attributable to the jammer.

The General Effectiveness Methodology (GEM) Model, developed by the Georgia

Tech Research Institute, is a mission-level model, widely used throughout the Operational

Testing and Electronic Combat communities, to assess mission-level survivability effects

due to electronic combat systems. The GEM model will be used here to illustrate that

when the GEM is run deterministically (i.e., only the mean value produced by the model

is used in making the acquisition decision) that the GEM and the IHDA provide the same

solutions. However, when the uncertainties associated with the GEM are included, it will

be shown that the GEM provides inconclusive information to the decision-maker, while

the IHDA continues to provide a conclusive result.

The General Effectiveness Methodology Model is a data-driven model which

simulates the encounters between an aircraft and various surface-to-air missile systems in

a representative operational scenario [52]. As the aircraft flies through the scenario, the

GEM determines its probability of being killed, and removes the aircraft from the

scenario when its probability of kill exceeds a given threshold. When one aircraft is

removed from the scenario, a replacement aircraft assumes the original aircraft's position

in the scenario. At the conclusion of the scenario the number of aircraft killed is used to

calculate an overall mission survivability rate. By running the GEM through the same

scenario, first without the jammer functioning (Dry) and then a second time with the

jammer functioning (Wet), the model will give a percent change in survivability based

upon the jammer's effectiveness.

The GEM will be used in a comparison study is to show that the Intelligent

Hierarchical Decision Architecture will produce the same results as a "standard"

methodology or model when the standard model is run in its deterministic mode. Yet,

when "noise" or uncertainty are considered with the standard method, the Intelligent
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Hierarchical Decision Architecture's method will be able to provide a definitive solution,

where the standard method's results are overwhelmed by the uncertainty.

In order to illustrate this phenomenon, the GEM model will first be used to show

that the Intelligent Hierarchical Decision Architecture provides the same results as when

the GEM model is run deterministically. That is, when the decision-maker uses just the

mean value generated by the GEM and compares it to the evaluation criterion, the

acquisition decision that would be made would be the same as that made with the results

from the IHDA methodology. Then, the errors produced in the running of the GEM will

be considered. When these uncertainties are taken into consideration, the results from the

GEM are found to be inconclusive, while those produced by the Intelligent Hierarchical

Decision Architecture are conclusive.

7.1.5.1 COMPARISON APPROACH

The GEM model was run using a scenario that included five of each type of the

threat systems considered in the IHDA testbed case. The GEM model uses Dry Pk values

to generate a number of aircraft kills in the no-jamming case and the Wet Pk values to

generate the number of aircraft kills in the jamming case. The two columns of Table 23

labeled Dry Pk and Wet Pk are the input data used to stimulate the GEM model for the

control case. In order to facilitate the comparison between the two methods, the

Reduction in Pk values generated from the second stage of the Intelligent Hierarchical

Decision Architecture, for each threat type, were used to calculate the Wet Pk (with

Jammer-X operating) values based upon a common Dry Pk (without Jammer-X operating)

value. The column in Table 23 labeled % Reduction in Pk is included to show that the two

methods were evaluated from the same input conditions.
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Table 23 GEM Control Case Input Values

Threat Dry Pk Wet Pk Reduction
System Value Value in Pk

A-1 0.45 0.180 60%
A-2 0.45 0.135 70%
A-3 0.45 0.090 80%
A-4 0.45 0.045 90%
A-5 0.45 0.000 100%
B-1 0.45 0.315 30%
B-2 0.45 0.270 40%
B-3 0.45 0.225 50%
B-4 0.45 0.180 60%
B-5 0.45 0.135 70%
C-1 0.45 0.405 10%
C-2 0.45 0.360 20%
C-3 0.45 0.3115 30%
C-4 0.45 0.270 40%
C-5 0.45 0.225 50%
D-1 0.45 0.360 20%
D-2 0.45 0.270 40%
D-3 0.45 0.180 60%
D-4 0.45 0.090 80%
D-5 0.45 0.000 100%

After the control case was run, which included all twenty of the threats, subsequent GEM

runs were performed where each threat type was removed from the scenario. The

removal of the individual threat systems was meant to introduce a bias in the analysis, to

see how the two evaluation systems would respond. The evaluation of the system

performance with the individual threat systems removed was then accomplished using the

IHDA methodology, such that the results generated by the two methods could be

compared under identical input conditions.
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7.1.5.2 COMPARISON RESULTS

The results from the GEM runs, and the associated results derived using the IHDA for

both the control case and the biased conditions, are shown in Table 24. The values given

in Table 24 are the Change in Probability of Survival (AP,) values with the change from

no jamming (Dry) to jamming (Wet) conditions. Assuming a 50% AP, requirement, the

YES/NO in each block represents whether or not the Jammer-X system should be

acquired based upon the mean value produced using GEM or the location of the Basic

Membership Function produced by the Intelligent Hierarchical Decision Architecture.

Table 24 GEM Mean Value vs. IHDA Results Decision Comparison

GEM IHDA

All Threats 60% BMF @ 60%
(CONTROL) { YES} { YES}

Without Threat A 43% BMF @ 40%
{NO} {NO}

Without Threat B 57% BMFs @ 60-90%
{YES} {YES}

Without Threat C 71% BMF @ 60%
{YES} {YES}

Without Threat D 57% BMF @ 60%
{YES} {YES}

Table 24 illustrates that if the mean produced by the GEM runs is used in

comparison to the evaluation criterion to make the acquisition decision, then the IHDA

and GEM solutions "track" each other. That is, both methods would provide the same

recommendation to the decision-maker for the five cases evaluated here. However, when

the errors associated with the results produced by the GEM are considered, the tracking of

the two methods quickly disappears. When the uncertainties associated with the solutions

from both methods are considered, the GEM leaves the decision-maker without any
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information upon which to base his decisions, while the IHDA provides a conclusive

result in all the cases illustrated here.

The results from the analyses, including the error bounds generated by the GEM

and the distributions of the BMFs generated by the IHDA, are used to generate a color-

coded decision chart, illustrated in Table 25. When the GEM error bounds are

considered, it can be seen that GEM provides inconclusive results for all the cases, while

the IHDA provides conclusive results in all cases. These results were generated using the

mean and the error bound to determine the green, yellow, and red region, similar to the

method used in current OT&E hypothesis testing efforts (i.e., If the mean and all the error

bound is on the "correct" side of the requirement the system gets a green rating. If the

mean and the error bound straddle the requirement a yellow rating is given. If the mean

and the error bound are completely on the "wrong" side of the requirement a red rating is

given.). Table 25 shows that, in this example, the GEM always produces a situation (i.e.,

a yellow rating) where no decision can be made, whereas, the IHDA provides conclusive

results in all cases. The mean and its associated error bound have been included in the

table to illustrate the magnitude of the uncertainty associated with the GEM results.

Table 25 Color-Coded GEM / IHDA Comparison

GEM IHDA
All Threats YELLOW GREEN

60% +1- 26%

Without Threat A YELLOW RED
43% +1- 29%

Without Threat B YELLOW GREEN
57% +1- 26%

Without Threat C YELLOW GREEN
71% +1- 26%

Without Threat D YELLOW GREEN
57% +1-_29%
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7.1.6 MISSION-LEVEL MODEL COMPARISON CONCLUSION

This brief example has illustrated that the Intelligent Hierarchical Decision Architecture

provides the same acquisition recommendation to the decision-maker as the General

Effectiveness Methodology Model, when the uncertainties associated with the GEM are

not considered. However, when the uncertainties generated by the GEM are included in

determining the acquisition recommendation, the GEM provides inconclusive results

while the IHDA can continue to provide a useful result. This has illustrated the

limitations of the decision-making capabilities of an analysis based upon the use of

mission-level models. In addition to the limitations illustrated here, other factors prevent

mission-level models from being an adequate solution to the issue that the development

of the Intelligent Hierarchical Decision Architecture was designed to address. These

factors are briefly described below.

* Sensitivity studies using the GEM model were conducted in the process of developing

the scenario used in this illustration. In those studies, it was determined that the GEM

model is very sensitive to the Dry Pk values chosen for use as the input. The

uncertainties associated with generating an absolute Pk value from a testing effort

have proven to be very large. Thus, the OT&E and Electronic Combat communities

have strived to develop means of analysis that can use relative Pk values (i.e., use a

measure of the change in Pk from dry to wet conditions rather than having to measure

an absolute Pk value). However, the GEM model requires absolute Pk values as input.

This sensitivity to a parameter that is difficult to generate with any certainty limits the

model's usefulness as an analysis tool.

* The GEM model does not use the information gathered during the testing effort to

generate its results. Rather, it uses digital models of the aircraft, jammer, and threat

systems which have been developed to simulate the engagements. These models are
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not always completely accurate representations of the true hardware due to limitations

on the information available to build the models. Therefore, although these mission-

level models are included in the analyst's toolbox, they are seldom an adequate

substitute for an analysis based upon the data gathered during the testing effort.

The GEM cannot consider factors that were not included in the model's development.

For example, it cannot consider the effect of threats that were not included in the

scenario, if no digital model for those threats is available. GEM also cannot be used

to examine such factors as operator training, tactics, environment, etc. or the other

non-testable factors that were considered through the use of the FCM in the

Intelligent Hierarchical Decision Architecture. Thus, although mission-level models

such as GEM allow a realistic threat scenario to be simulated, analysis methods such

as that provided by the Intelligent Hierarchical Decision Architecture provide a more

realistic assessment of the system-under-test's task-level accomplishment capabilities.

The running of mission-level models, such as GEM, depends upon having a detailed

knowledge of the aircraft dynamics, vulnerabilities, etc. If that information is not

available, the model can be run, as it was here, using only the Pk - to - P, algorithms.

However, running the model from that point assumes a knowledge of the Pk values,

which is information that is not directly available from the OT&E testing effort.

Therefore, the analyst is still faced with determining a method to take the low-level

information that is gathered on the test range and aggregating it to a level where it can

be used as input to the mission-level model.
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7.2 INFORMATION CONTENT MEASURE

In 1949, Claude E. Shannon, working for Bell Telephone Laboratories, devised a measure

for indicating the amount of information, choice, and uncertainty in a digital transmission.

His measure, based upon the probability of each bit of information having a certain

probability of occurrence, pi, took the form of entropy from statistical mechanics, as [53]

n

H _KYp log(pi) (7-2)
i=1

Within fuzzy set theory, an important measure has become fuzzy entropy, which is a

measure of the amount of difficulty or ambiguity associated with making a decision based

upon the information contained within a fuzzy set. Most of the work in developing fuzzy

entropy measures has begun with the Shannon entropy measure as its departure point. An

excellent overview of the work done in developing the myriad of fuzzy entropy measures

is provided in [54].

One of the fuzzy entropy measures, introduced in 1972 by DeLuca and Termini, is

based upon the Shannon entropy, and is given as [20]

n

H = -KXM i log(/ti) + (1 - i) log(1 - '-) (7-3)
i=1

where K is a positive constant used as a normalization factor. This measure satisfies the

four properties described in Chapter 2, as necessary to be considered an entropy measure.

This measure will be used to assess the amount of information contained in the

COMMFFYs of the first three stages of the Intelligent Hierarchical Decision

Architecture, where fuzzy sets are being used. For the probabilistic information resulting

from the final stage -- the aggregation using Dempster's Rule of Combination -- a
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different measure is needed. There, to measure the entropy contained in the information

given to the decision-maker, a formulation that is capable of measuring the entropy

provided by the Dempster-Shafer approach is needed. Stephanou and Lu provide the

ideal entropy measures based upon the information provided from Dempster's Rule of

Combination in [55]. There, they define the belief entropy, a measure of the degree of

confusion in one's knowledge about the exact fraction of belief that should be committed

to each focal element of E, as

n
Hb = _m(qi)log(qi) ( 7-4 )

i=1

The core entropy, a measure of the degree of confusion in one's knowledge of

which possible subset(s) of E the true value of the variable might be in, as

n

Hq _h(qi)logh(qi) (7-5)
i=1

where h(qi ) = nk(qi) and k(qi) is the cardinality of the subset minus 1.
_k(qj)

i=1

The partial ignorance, a measure of one's inability to confine the true value of x

within a small subset of the frame of discernment, as

n

I b(qi)q (7-6)
i=1

#k(qi)
where q - k(qO)

k(E)1

158



Finally, the generalized entropy, which is the measure used to assess the

information content of the final Intelligent Hierarchical Decision Architecture result, is

given by

H = Hb + Hq + P3I  (7-7)

where 3 is a scaling factor.

Since entropy is the measure of the inability to make a decision based upon the

available information, the amount of entropy should decrease with a progression through

the stages of the Intelligent Hierarchical Decision Architecture.

7.2.1 TESTBED CASE ENTROPY RESULTS

Entropy is used as a measure to determine if the information content is moving in the

correct direction with a progression through the Intelligent Hierarchical Decision

Architecture. Using ( 7-3 ) to determine the entropy of the first three stages of the

Intelligent Hierarchical Decision Architecture and ( 7-7 ) for the final stage, the entropy

result for the Intelligent Hierarchical Decision Architecture Best-Case and Worst-Case

information are given in Figure 39.
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Figure 39 Intelligent Hierarchical Decision Architecture Information Content
(Entropy) Measure

From Figure 39, it can be seen that the amount of entropy in the decision-making

process is decreasing with the progression through the stages of the Intelligent

Hierarchical Decision Architecture. The normalization factor, K, in (7-3 ) was held at

unity through the stages. This choice of the factor further emphasizes the concentration

and compression of information that is occurring with the progression through the

Intelligent Hierarchical Decision Architecture.

Also, one can note from the figure that the amount of entropy associated with the

best-case adjustment is, as expected, lower than the entropy associated with the worst-

case adjustment. This is due to the concentration effect of the exponential adjustment

used in the best-case. This illustrates property EP3, discussed in Chapter 2. Finally, it

should be noted that the entropy associated with making a decision with the Dempster-
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Shafer probabilistic bound information is minuscule in comparison to that of the entropy

associated with decision-making with the original raw test data -- the desired result!!

7.3 SUMMARY OF RESULTS

The Intelligent Hierarchical Decision Architecture has been developed to address a

challenge faced by analysts in the information age. That challenge is to provide

information to decision-makers on a system-under-test's ability to accomplish its

designated tasks, when testing can only provide information at a functional-performance

level. As stated in Chapter One, although this research was spawned by the issues faced

by the OT&E community, its results are equally applicable to any analyst who is faced

with the task of aggregating low-level data into information that is meaningful for high-

level decision-making.

Chapter 1 described the Operational Test and Evaluation process and highlighted

the problems with current analysis methods. The problem being solved by this work was

introduced, and an overview was presented in the introductory chapter.

Chapter 2 provided an overview of the relevant fuzzy set and fuzzy logic

concepts, whose understanding was necessary for the remaining work.

Chapter 3 discussed the Clustering Methodology. In that methodology, first, one

of two methods was chosen to define the Basic Membership Functions (BMFs), the fuzzy

sets used to define regions of the universe of discourse: either a clustering or heuristic

method, depending on the amount of data available to perform this step. Once the BMFs

are defined, the Composite Fuzzy Membership Function (COMMFFY) Compositional

Methods are used to derive a COMMFFY (i.e., a fuzzy distribution) from the observed

functional-performance level test data. In the process of determining the COMMFFY

that will pass out of this phase of the Intelligent Hierarchical Decision Architecture into

the next, several Fuzzy-Statistical Similarity Measures and an On-Line Optimization
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Method to optimize the choice among the available compositional methods to be used for

a given data set were defined. Thus, the input to the Clustering Methodology was the raw

test data, at the functional-performance level and the output was an optimized Composite

Fuzzy Membership Function (COMMFFY) representing a fuzzy distribution of those data.

Chapter 4 discussed the second phase of the Intelligent Hierarchical Decision

Architecture, the Fuzzy Associative Memory. The Fuzzy Associative Memory

transforms the Composite Fuzzy Membership Function at the functional-performance

level, developed in the first phase, to a Composite Fuzzy Membership Function at the

task-accomplishment level. This transformation from one information level to the next,

is the first step toward synthesizing the low-level information into high-level information

that is more meaningful to the decision-maker. The Fuzzy Associative Memory is a

fuzzy rule bank containing the transformation relationships between each input and

output variable. Using the result of the Reduction Theorem, the combinatorial explosion

problem of dealing with all the interactions among the input variables was avoided. The

Fuzzy Associative Memory, in general, can be developed from any information available

for the application, including input/output data or expert opinion. The Fuzzy Associative

Memory for the testbed case, was developed based upon information derived from a

Modeling & Simulation sensitivity study. The study used an engagement-level model to

relate the functional-performance level measures to the task-accomplishment level

measure. Thus, the FAM served to aggregate the performance across all the functional-

performance measures and provide a measure of system performance at the task-

accomplishment level. The input to the Fuzzy Associative Memory were the functional-

performance level COMMFFYs derived from the Clustering Methodology, and the output

was a COMMFFY at the task-accomplishment level.

Chapter 5 described the Fuzzy Cognitive Map, used within the Intelligent

Hierarchical Decision Architecture to adjust the task accomplishment-level COMMFFY

derived from the first two phases. This adjustment took into consideration the factors that

could not be controlled or included during the testing phase, but which would have
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ultimately affected the system performance measure. A Fuzzy Cognitive Map is an

expert-created drawing of cause-and-effect relationships. Basic theories on Fuzzy

Cognitive Maps suggested by Kosko and other researchers, have been extended in this

work to allow them to be used to adjust the system performance derived in the first two

phases of the methodology. Using the FCM-based methodology described in Chapter 5,

the input to this phase is the task-level COMMFFY derived from the test measurements

in the first two phases of the Intelligent Hierarchical Decision Architecture, and the

output is a task-level COMMFFY adjusted to account for the factors that cannot be

included or controlled in the testing effort.

The first three phases of the Intelligent Hierarchical Decision Architecture,

described thus far, have taken the low-level functional performance measurements

gathered in the laboratory or test range and aggregated/synthesized them into a fuzzy

distribution at the task-accomplishment level. In addition to simply aggregating the

information included in the testing effort, realism has been added to the analysis process

by accounting for the effect of factors known to affect the outcome, if those factors could

have been controlled or included in the testing, using the Fuzzy Cognitive Map. In the

first three stages, the Intelligent Hierarchical Decision Architecture has dealt with each

individual logical division of the system performance separately. For example, in the

testbed case, the Jammer-X performance against each individual threat system it might

encounter during operational use, is analyzed. The final stage of the Intelligent

Hierarchical Decision Architecture aggregates across these logical divisions to form a

single, overall system performance bound. In Chapter 6, the Aggregation Methodology

is described, which makes use of the Dempster-Shafer Theory of Evidential Reasoning,

and in particular the Dempster's Rule of Combination to combine the adjusted task-level

performance information across all the logical divisions of the system performance to

provide the final probabilistic bound on the system performance that is provided to the

decision-maker.
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The illustration of the methodology applied to a Testbed Case are shown

throughout the document, with the full results given in Appendix F. There the reader can

follow all the steps through the Intelligent Hierarchical Decision Architecture, beginning

with the raw test data and ending with the probabilistic bound that is provided to the

decision-maker.

Finally, here in Chapter 7, a comparison with current analysis methods and

proposed methods based solely upon statistical and probabilistic methods was made.

With this comparison, it was illustrated that the current methods provide limitations

where the Intelligent Hierarchical Decision Architecture does not. The comparison with

current mission-level models also illustrated the shortfalls of those methods and the

strength of the Intelligent Hierarchical Decision Architecture in the same situation. Also

in this chapter, an information content measure was introduced, based upon the concepts

of fuzzy entropy. With this measure, it was illustrated how the inability to make a

decision decreases as a progression is made through the stages of the Intelligent

Hierarchical Decision Architecture. The comparison with current methods and the

entropy measure were used to illustrate the merits of the approach. The following section

outlines the contributions that this work makes to fuzzy set theory, system analysis, and

test and evaluation.

7.4 CONTRIBUTION

Throughout this dissertation, a description of how each segment of the Intelligent

Hierarchical Decision Architecture contributes to both the areas of fuzzy set theory and

systems analysis, from a theoretical perspective, has been provided. In addition to its

theoretical contributions, this work serves as the first step in solving the decision-making

dilemma faced by decision-makers in the information age. It provides a methodology

through which functional-performance level data can be aggregated, synthesized, and
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adjusted to provide high-level, realistic information to the decision-maker at a level

where it is truly meaningful as a decision-making aide.

The current analysis methodologies used by the OT&E community were described

in Chapter 1. These methods provide a mechanism for summarizing system performance

data observed on the test range or in the laboratory and making statistical statements on

the relevance of the measurements. No satisfactory method has been developed to

aggregate and synthesize the gathered data into relevant information until this work. A

comparison with proposed statistical/probabilistic methods was conducted in this chapter,

where the benefits of the Intelligent Hierarchical Decision Architecture were highlighted.

In addition to those benefits, in a broader perspective, the Intelligent Hierarchical

Decision Architecture provides

" The Intelligent Hierarchical Decision Architecture provides information to assist the

decision-maker at a level where it is meaningful to the decision being made. Current

methods provide a statistically-based pass/fail determination at the functional-

performance level and leave the job of assimilating the information to a relevant

information level up to the decision-maker.

" Using the iterative process inherent in the development of the Intelligent Hierarchical

Decision Architecture11 , the architecture provides the potential to make decisions

earlier in the T&E process, than would normally be possible. This early decision-

making capability is a valuable tool as a potential for saving testing dollars, or for

1 By the iterative approach, we are referring to how: ,(1) the BMFs may be developed heuristically,
initially, then subsequently refined using the clustering method described in Chapter 3 as more low-level
data are gathered on the system's performance; (2) the FAM rules may be developed heuristically,
initially, and refined as a better understanding of the MOFP-to-MOTA transformation is gained through
further testing or M&S studies; (3) the FCM provides a natural mechanism to combine information from
diverse sources, as more relevant adjustment factors are discovered; and (4) the Dempster-Shafer Theory
used within the Aggregation Methodology allows more evidence to be combined while maintaining the
information already considered.
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when a statement must be made on a system's potential early in the program, based

upon a small amount of testing data 12 [56].

Finally, not only does the Intelligent Hierarchical Decision Architecture provide for

early decision-making capabilities, it also will provide direction for M&S studies,

which in the past have been conducted for seemingly unknown reasons. With the

targeted objective of refining the FAM rules or defining the level of impact of a factor

in the FCM, future M&S efforts will be more focused.

With this work, a move toward solving the decision-making dilemma faced by

decision-makers in the information age has been made. The door has been opened to the

use of intelligent techniques in the systems analysis arena. In addition to the

contributions made to the systems analysis arena, the state of the art in several aspects of

fuzzy set theory has been advanced. These contributions were discussed throughout the

dissertation, as they were introduced, and are summarized briefly below.

" The Clustering Methodology's Compositional Methods represent a new method for

representing test data in terms of a possibilistic, or fuzzy, distribution.

" The Fuzzy/Statistical Similarity Measures developed to assess the optimal

compositional method to be used within the clustering methodology offer a new

means of comparing possibilistic and probabilistic distributions.

* The Fuzzy Associative Memory developed here handles fuzzy distributions as input

and output, where current FAMs can only deal with individual data points.

12 For example, Congress mandated an Early Operational Assessment (EOA) of the C- 17 transport plane

based upon only 50 hours of flight testing data. The resulting information from the C-17 EOA was a rather
benign answer, for no definitive result could be derived using current analysis methods. The IHAS would
have allowed a more definitive answer on the system performance at this early stage, thus providing a more
satisfying result to the Congressional inquiry.
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" The Fuzzy Cognitive Map used here to adjust performance indicated during the testing

effort advances the current uses, which are limited to answering what-if questions in a

binary fashion.

" The Aggregation Method making use of Dempster's Rule of Combination brings the

final solution back to the probabilistic realm, where decision-makers are more

comfortable.

" The fuzzy-entropy-based information content measure used to assess the adequacy of

the overall analysis structure combines two previously diverse areas to yield a single

measure.

7.5 FUTURE RESEARCH DIRECTIONS

This work has served to open the world of fuzzy set theory and intelligent techniques to

the world of systems analysis, particularly to the analysis of Operational and Test and

Evaluation data. With this initial work completed, the potential applications of intelligent

techniques to this arena should continue to be explored. In the course of this research,

many interesting extensions surfaced, which should now be pursued using the work

outlined here as the foundation.

First, application of intelligent techniques to develop aparallel hierarchical

structure that would allow information from both field testing and modeling and

simulation to contribute to the decision-making process simultaneously, should be

pursued. In the current era of diminished research and development budgets, both within

the Department of Defense and within the technical community in general, the systems

analysis community is under increasing pressure to use M&S as an enhancement to, and a
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substitute for, expensive field testing efforts. Current efforts have been limited to

conducting field testing to address certain testing objectives and to using modeling and

simulation to address untestable objectives, without an effort to use both sources of

information to complement each other in answering a single analysis objective. A

method is needed through which both sources of information can be combined to provide

a richer source of information for the decision-maker. The research effort would involve

developing an intelligent parallel hierarchical structure through which field test data

analyzed using the Intelligent Hierarchical Decision Architecture described in this work,

and M&S results from currently-used models, beginning at the same initial conditions,

are compared and coupled. Conflict resolution could be accomplished through the use of

the Dempster-Shafer theory and a Fuzzy Cognitive Map could be used to meld the

information from both the field testing and the model to produce decisions based on both

sources of information. In addition to the development of the structure for conflict

resolution and information melding, this effort would require the extension of the

information content metric developed in this work. That measure would quantify the

information content of the testing and modeling results, and be used to determine if

adequate information exists to make informed decisions. Further, the metric could be

used to determine if gathering further information would move the information content

measure in the correct direction.

Second, application of intelligent neuro-fuzzy decision models to the control

loops in currently used missile engagement models to more adequately model human

operator responses would drastically increase the accuracy and realism of those models.

Current missile engagement models, such as ESAMS, do not adequately model the threat

system response under jamming conditions for a number of reasons. One of those

reasons is that no mechanism is included in the model to replicate the human operator's

decision process of taking control away from the automatic controller when indications

warrant that the guidance system is being jammed. Fuzzy logic decision modeling offers

an ideal mechanism for modeling the actions the threat system operator would take under
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various electronic combat conditions. The fuzzy logic controller that models this

decision process could be developed by melding data and expert opinion to build the

fuzzy rule base. The system could be built based upon data measurements of human

operator response already collected by the Armstrong Aeromedical Laboratory and

expert opinion provided by the ESAMS developer, Dr. Sam Baty at The BDM

Corporation. Once the fuzzy logic controller has been successfully implemented, it can

be included within the current missile engagement models, thus improving the model's

performance and making it more adequate for use in analysis of electronic combat

systems.

Finally, development of a neuro-fuzzy mechanism to model differences in threat

system performance against electronic combat systems, based upon differing alignments

of the components within the threat system would dramatically increase the reliability of

conclusions drawn from testing and analysis efforts. Current efforts sponsored by the

Susceptibility Modeling and Range Test (SMART) Program aimed at Verification,

Validation & Accreditation of engagement models in an electronic combat environment

have revealed that the performance of the jamming system is dependent on the alignment

of the threat system (i.e. the tuning of various filters and components within the threat

system). Although this phenomenon has been observed, and is a hindrance to the

development of robust engagement models and jamming techniques, no mechanism for

quantifying the effects of the differing alignments on the threat system has been

established. Intelligent neuro-fuzzy techniques provide an ideal mechanism for the

development of a means to quantify, in fuzzy terms, the effects of differing alignments

and the resulting effects on the jammer effectiveness against the threat system. Once the

mechanism for quantifying and modeling the alignment effects has been developed, it can

be applied to the development of robust and adaptive jamming techniques.

These three research projects would extend the work started here and extend the

reach of intelligent techniques further into the realm of the systems analysis arena.
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APPENDIX A

CURRENT ANALYSIS METHODS

This appendix provides an overview of the OT&E community's current analysis

techniques, broken into three broad categories -- Statistical Analysis Tools, Statistical

Model Building Techniques, and Modeling and Simulation.

A.1 STATISTICAL ANALYSIS TOOLS

Standard statistical methods, including Hypothesis Testing, Decision Theoretic

Approaches, Bayesian Analysis, Analysis of Variance, and Experimental Design [57] are

the most widely used T&E analysis tools today.

A.1.1 HYPOTHESIS TESTING

The classical Hypothesis Testing approach [58] views the outcome of each test event as a

realization of a random variable. A parameter, 0, representing real system performance,

is estimated as X, through observation of the test measurements x], x2,..., XN. A

hypothesis is built showing that the parameter does or does not lie within a certain

interval, usually built around the requirement of interest, for example
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Ho: O -TR

H:O< TR (A-i)

where TR is a system requirement. The test data are used to prove or disprove the null

hypothesis, Ho. Two types of error are possible when conducting hypothesis testing --

rejecting the null hypothesis when it is really true, "throwing away a diamond," and

accepting the null hypothesis when it is really false, "buying a lemon" [59]. These errors

are termed Type I and Type II errors respectively, and are quantified by risk measures a,

called the size of the test, and P3, the power of the test. The value chosen for a determines

the amount of risk associated with making a Type I error, referred to as the producer's

risk, and is used to determine the size of the test. Once the risk the producer is willing to

take is determined, the decision criteria value, C1, is set based upon

a = Pr[XC < C,16v TR] (A-2)

Once the value for a is chosen, the value for /3, the consumer's risk, is determined -- the

tester can only control one type of error using this approach.

The Decision Theoretic Approach allows the "cost" associated with making both

a Type I or Type II error to be considered in the test design, therefore optimizing the test

from both the producer's and consumer's perspectives. This is accomplished by

constructing a decision rule minimizing the risk, or expected loss, defined as

risk = aL1 + (1- P) L2  (A-3)

where L1 and L2 are the costs associated with making Type I and Type II errors,

respectively.
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The Bayesian Approach offers a method of incorporating previously gathered

information, or a priori information, when building the posterior distribution used for

decision making at the conclusion of testing [60]. The Bayesian framework for

hypothesis testing expands upon the Decision Theoretic Approach, by incorporating the

use of the prior information. The Bayes' decision rule is to reject Ho if

XBAYES < CBAYES (A-4)

where CBAYES is chosen to satisfy

L1 * Pr[XBAyES < CBAYES] L * Pr[XBAyEs > CBAYES] (A-5 )

The danger associated with the use of a Bayesian Approach is in the choice of the

prior distribution. An improper choice can bias the results. For example, in the choice of

a prior distribution that does not include the true parameter's value, no matter how much

further testing is done, the posterior distribution will never converge to the true value. On

the other hand, if the prior distribution contains the true value, but is concentrated away

from it, additional testing data will eventually compensate for the prior distribution and

converge on the true value, but at a cost of many additional test events [57].

Finally, in an effort to limit both types of risk, a variation of the standard

Hypothesis Testing method using a three-part decision region, was adopted by the OT&E

analysis community. A three-part decision region can be constructed that limits both the

consumer's and producer's risks to acceptable values and creates an undetermined region

in the middle. Using this method, two decision criteria are developed, one limits the

producer's risk and one limits the consumer's risk, then the decision rule becomes
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If X > C!, Accept H0

If X < C2 , Reject H0  (A-6)

If C2 -< X ! - C1 , Undetermined

The critical value, C2, is defined as the minimum acceptable value of a performance

criterion, the distribution of critical value observations forms the critical distribution.

The objective value, C1, is a "nice to have" value of system performance that the system

user's would like the system to achieve. The two distributions' means are separated by

some distance, D. Assuming the use of a normal distribution, a Z-value is defined

associated with the desired producer's and consumer's risk. Knowing the actual mean

and variance of the critical and objective distributions allows the calculation of the

sample size required to eliminate the undetermined region, as [4]

N = , + O)(TC+ Co)2
D 2 (A-7)

Assuming a knowledge of the true system variance, a sample variance can be calculated

using

a True
NSample (A-8)

where N is the sample size. To satisfy the two risk values, two evaluation criteria must be

established, one associated with the producer's risk and the objective distribution, TH,

representing a "reject if below value" and one associated with the consumer's risk and the

critical distribution, TH., an "accept if above" value. These criteria are determined using
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THa = Mo - ZaaO(True) (A-9)

TH# = Pc + ZPCC(True) (A-10)

Although this method appears to be a good compromise between consumer's and

producer's risk, the undetermined rating region has caused major problems for the OT&E

community. Because the testing involved in OT&E typically involves very small sample

sizes, the sample variances are very large (see equation (A-10) for the relationship of

sample size and sample variance), therefore, the undetermined region is very large.

Table A-1 illustrates the problem with the undetermined rating region. If enough

testing is not accomplished to make the sample variances small enough, a region where

no performance assessment can be made results. The example in Table A-1 is for a

system with Mc = 26.3,,Mo = 28.2, arc = 1.6, and co = 1.5; consumer and producer both

want 5% risk; therefore, Z, = Zp = 1.645.

Table A-1 Sample Size and Undetermined Rating Region Correlation

Sample Size THa TH8 Undetermined

"Reject if Below" "Accept if Above" Region Size

1 25.73 28.93 3.2
2 26.45 28.16 1.7
4 26.96 27.62 0.65
6 27.19 27.37 0.18
8 27.32 27.23 0

Table A-I illustrates the potential for a test program to conclude without the test

community being able to make any claims about system performance. Such was the case

on the B-lB Defensive Avionics System OT&E program [61]. During that testing, the

undetermined region played a major role in the inability of analysts to draw conclusions

on system performance. In testing to measure the Percentage of Threat Detected, six
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threats were tested using over 500 test events. All events exceeding the critical

requirement, yet the measure was rated as Undetermined. The measurement of

Percentage of Threat Identified, experienced the same condition -- over 500 events

exceeding the requirement, resulting in an Undetermined rating. Finally, testing to

measure Percentage of Correct Mode ID, tested six threats using over 500 test events with

5/6 exceeding the requirement, and again the result was an Undetermined rating. After

this experience, the Air Force OT&E community adopted a practice of limiting its

statistical analysis to calculating the mean of the test measurements and comparing it to

the system requirement; making a pass/fail determination based upon which side of the

system requirement the test sample mean lies.

As a comparison of the methods discussed so far, Table A-2 shows the analysis of

the same data using the different methods [57]. The example is an analysis of a system

having a true probability of 0.70 and a system requirement of 0.75. Ten test events were

conducted and the data were analyzed using the methods shown above against a

hypothesis of

H 0:P > 0.75

HI:P< 0.75

Table A-2 Decision Probabilities Using Various Statistical Approaches

Approach Probability of:
Accept Ho Undetermined Reject Ho

Classical Hypothesis Testing 0.90 0 0.10
3-Part Hypothesis Testing 0.02 0.88 0.10

Decision Theoretic 0.47 0 0.53
Bayesian 0.21 0 0.79

It should be noted that the correct decision for this example would have been to

reject Ho, because the actual system's performance is below the requirement. The 3-Part
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Hypothesis Testing Method gives an unacceptably large probability of an "undetermined"

rating, which has been the experience of the Air Force's OT&E agency on many large and

expensive test programs, causing an abandonment of this approach. Further, the Bayesian

Approach although most likely to produce the correct decision, has not been used

extensively within the OT&E community due to the lack of information available to

construct the prior distributions required by the approach. Finally, it should be noted that

the Classical Hypothesis Testing approach, most often used by the OT&E community,

would most likely result in the wrong decision being made.

A.1.2 ANALYSIS OF VARIANCE

Analysis of Variance (ANOVA) is a statistical technique for analyzing measurements

when several factors are operating simultaneously, to determine which are important, and

to estimate the magnitude of the effects [62]. The ANOVA model is a linear combination

of the quantities being examined, plus an error term, such as

Yi = xligj + x21i3 2 + ... + xpip "+ ei (A-11)

where the xij are indicator variables, taking on the values 0 or 1, and the fAi are the effects.

An ANOVA can be carried out to examine the effect of a single variable on the outcome

of a process, to examine the effects of blocking variables, or to look at the effects of

several variables and their interactions. By systematically examining each factor and

comparing its effect to the variance in the process, conclusions can be drawn on its

significance to the experimental outcome.

The single variable analysis, or one-way ANOVA, examines the effect of

variations in a single factor, for example, the effect of different aircraft altitudes on

bombing accuracy. The model is [63]
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YiJ= /I + T + E' (A-12)

where y is the overall mean, ; is the treatment effect, and Eij is the error term. The

analysis tests the hypothesis that all the treatments means are statistically equal, or

Ho: z = O, V i ( A-13)

against the alternative hypothesis that one of the treatment means differs from the rest.

The data are gathered, then a mean for each treatment and an overall mean is calculated.

The sum of squares of the treatment, SStr, sum of squares of the error, SSE, and the total

sum of squares, SST, are calculated using the formulas

k ni

SStr: = (I /y-.) ( A-14)
i=1 j=1

k ni
SSE=: E I (Yij _ Yi. ) 2  A1S( A-15S)

i=1 j=1

k ni

SST E ( y.)2 = SStr + SSE (A-16)
i=1 j=l

where yij are the individual observations, Y.. are the treatment means, and 7.. is the overall

mean of all the observations taken together. If there are k treatments, ni observations of

each treatment and N observations overall, the mean squares of the treatment and error

are calculated as shown in Table A-3.
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Table A-3 One-Way ANOVA Table

Source of Sum of Degrees Mean Square f0
Variation Squares of (MS) (F-statistic)

(SS) Freedom
(dof)

Treatment SStr k-1 SStr MStrMStr = -- fo =-Fk1,Nk

k-1 MSE

Error SSE N-k SSEMSE-
N-k

Total SST N-1 I

Thefo value is compared to the value derived from an F-distribution table using

the desired level of confidence and the degrees of freedom associated with the treatment

and error. Iffo exceeds the F-distribution value, the hypothesis is rejected. This indicates

that at least one of the treatment means differs statistically from the overall mean. If the

hypothesis is rejected, various methods are available to determine which treatment(s)

differ from the rest, such as Fisher's Least Significant Difference Method or the Duncan

Multiple Range Comparison Test. Those methods are not discussed here.

As an example of the one-way ANOVA technique, consider the testing of an

aircraft-mounted jamming system designed to generate track error within a threat

missile's guidance system, causing the missile to miss hitting the aircraft. The measure

used to gauge performance of the jamming system is Missile Miss Distance, a measure of

the closest point of approach of the missile to the target aircraft. During the testing, three

different jamming techniques are used against a threat missile system, and the resulting

miss distances are measured as shown in Table A-4. {NOTE: The values shown in Table

A-4 were created to illustrate the methodology, they do not represent the performance

measures of any actual system. }
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Table A-4 Miss Distance Generated by Various Jamming Techniques

Jamming Technique #1 Jamming Technique #2 Jamming Technique #3
49 31 41 26 52 54 48 36 53 45 59 51 58 45 53
39 46 40 37 58 31 49 42 46 44 41 50 44 38 56
43 34 54 28 48 41 51 45 59 39 68 47 64 32 55
40 22 32 35 45 50 33 47 43 57 50 42 62 36 49

27 37 40 46 63
Y. = 40 Y2. = 45.04 Y3. =_50

The sum of squares calculation is shown below where Y.., the overall mean, is equal to

45.01.

SStr = 20(40-45.01)2 + 25(45.04-45.01)2 + 20(50-45.01)2 = 1001.1

SSE = (49-40)2 + (31-40)2 + ... + (49-50)2 = 5321.0

The resulting ANOVA table is shown in Table A-5

Table A-5 Miss Distance ANOVA Table

Source SS dof MS fo
Jamming 1001.1 2 500.6 5.832

Error 5321.0 62 85.82
Total 6322.1 64

Using a 5% confidence level, F2,62 = 3.07. Sincefo > F2,62 at least one of the

jamming techniques has a significant effect on missile miss distance. The techniques

mentioned above (Fisher's Significant Difference Method or Duncan Multiple Range

Test) are used to determine which technique is significant.
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A.1.3 DESIGN OF EXPERIMENTS

Experimental Design techniques are used within the OT&E community as a systematic

test planning tool. A Full Factorial Design, or orthogonal array, examines each factor of

interest, at each possible level, as a separate test run [64]. Once the test runs defined in

the Full Factorial Design have been accomplished, there are various methods used to

determine which factors have a significant outcome on the effect being measured. In

most cases in the OT&E context, a Full Factorial Design will design a test with many

more test runs than can be accomplished due to test resource constraints. Therefore, the

Fractional Factorial Design techniques are used to systematically reduce the size of the

test. In most cases, the OT&E analyst makes use of one of the many pre-published

Fractional Factorial Design schemes to reduce the size of the test. The example that

follows shows the Fractional Factorial Design for the Joint Standoff Weapon (JSOW),

currently in the test concept development phase at the Air Force Operational Test and

Evaluation Center. In this example, the factors of interest are defined and a test matrix is

developed that defines the levels of each factor in each test run. Once the test runs have

been accomplished, the data will be analyzed in accordance with (A- 17) through (A-20).

These equations give the result on the outcome of the test based upon each of the main

effect factors, which is subsequently used to determine if that factor is a significant effect

on the experimental outcome.

A subset of the JSOW operational users' requirements, those factors important for

the system to be able to perform its intended mission, are listed below [65].

" Capable against fixed, relocatable, and moving targets

" Usable day, night, and in or through adverse weather

" Low or high altitude capability from outside target point defenses

* Targeting options must allow for preplanned, inflight self targeting, or inflight

third party
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From these users' requirements, four test factors were defined: target type (fixed,

relocatable, moving), day type (day, night, adverse weather), launch altitude (low,

medium, high), and targeting option (preplanned, self-targeting, third-party). A Full
4Factorial Design of four factors, each at three levels, would require 3 , or 81 test runs,

clearly too many test events when a half million-dollar missile is expended on each run.

Using a 34-2 design [66], the number of test runs can be reduced from 81 to nine. Using

run numbers 1, 14, 27, 33, 43, 47, 62, 66, 76 from the Full Factorial Design matrix, the

Fraction Factorial Design test matrix is shown in Table A-6 [67].

Table A-6 Orthogonal Array Design Matrix for JSOW Testing

Run Number Factors
(yji) Target Type Day Type Launch Altitude Targeting

1 (FFD #1) Fixed Day Low Preplanned
2 (FFD #14) Fixed Night Medium Self
3 (FFD #27) Fixed Adverse Weather High Third-Party
4 (FFD #33) Relocatable Day Medium Third-Party
5 (FFD #43) Relocatable Night High Preplanned
6 (FFD #47) Relocatable Adverse Weather Low Self
7 (FFD #62) Moving Day High Self
8 (FFD #66) Moving Night Low Third-Party
9 (FFD #76) Moving Adverse Weather Medium Preplanned

The measure used in this testing will be the number of target kills per weapon at

each experimental condition. The analysis for this test will proceed as follows.

Step 1, Main Effect Estimation: As the data are collected, each is given the designation yi

corresponding to the Run Number in Table A-6. From these data, main effect estimations

are calculated as shown below.
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Target type main effect calculations:

O7TFix -- Y1 +  Y2 +  Y3' 0 7TRlt -Y4 
+  Y5 +  Y6 'rr Mvg Y7 +  Y8 +  Y9' 3 ' 3 ' 3 (A -17 )

Day type main effect calculations:

Y+Y 4 +y 7  o Y2 + Y5 + Y8 a Y3 +Y 6+Y 9
DTDay :- 3 DTNgt 3 DTAdv 3 (A-18)

Launch Altitude main effect calculations:

OLnchLo :- Y1 + 
Y6 

+ Y8, InchMed -Y2 
+ 

Y4 
+ Y90LnchHi - Y3 

+ Y5 + Y7
' 3 3 ' 3 (A-19)

Targeting Option main effect calculations:

OTo'P= Y1 + Y5 + Y9 1 kO,Self _Y2 + Y6 + Y7 , bro, TrdP -- Y3 + Y4 + Y8
T,3 ' 3 ' 3(A-20)

Step 2, Calculate Statistical Significance of Estimates: The main effect estimates are the

numbers calculated above. Main effect plots can be made to give an informal, visual

perspective on the factor effects. For a more rigorous treatment, the Lenth's Method will

be used to determine significance of the factor effects on the test outcome, as shown in

equations (A-21) through (A-23) below.

First, place the absolute values of the effect estimates in ascending order.

Compute an initial estimate of the sample error as 1.5 multiplied by the median of the

effect estimate absolute values.
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s = = 1.5*median( 0) (A-21)

Compute a final estimate of the sample error as 1.5 multiplied by the median of

the effect estimate absolute values that are less than 2.5 times the initial estimate found

above.

S= a& =1.5*median( 0i <25"s, ) (A-22)

The effect is significant if its estimate absolute value is greater than the

appropriate t-distribution statistic times the sample error.

> (tm (Sbfin A-23)
2'3

Step 3, Verify Interaction Effects Assumption: In using such a highly fractionated test

matrix, an assumption must be made that there are no interactions between the factors.

As a final step in the analysis process, the validity of that assumption must be checked.

Using the additive model shown below, calculate the prediction for each factor setting.

0(Ti, DTj,Lnchk ,TOl) = y + b7Ti + DT j + knchk + bTOI ( A-24)

where yu is the overall mean, and the effect estimates at the designated factor level are

represented by the 0 terms. If the prediction is close to the observed value, interactions

among the factors are not significant. If the prediction is far from the value observed in

testing, an important interaction may be present that has not been accounted for in the test

measures taken.
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The statistical methods discussed in this section form the basis of the

mathematical analysis techniques used by the OT&E community. These methods depend

on several assumptions for a successful analysis; such as, having large sample sizes,

knowing the underlying statistical distribution of the data, and being able to separate

experimental effects. Most of these assumptions are violated in OT&E. The National

Research Council's Panel on Statistical Methods for Testing and Evaluating Defense

Systems stated the following [68].

... our visit to Fort Hunter Liggett13 made it clear that routine
application of standard experimental design practice will not always
be feasible given the constraints of available troops, scheduling of
tests, small sample sizes, and the weighting of test environments.

Furthermore, the panel believes that the hypothesis testing framework
of operational testing is not sensible. The object of operational testing
should be to provide to the decision-maker the data most valuable for
deciding on the next course of action. The next course of action
belongs in a continuum ranging from complete acceptance to complete
rejection. Therefore, in operational testing one should concentrate on
estimation procedures with statements of attendant risks. We also
plan to explore the utility of other methods for combining information
for purposes of evaluation, including hierarchical modeling.

Not only are the assumptions for properly using these statistical methods violated

in OT&E, but as the National Research Council's comments highlighted, these methods

are not adequate to provide the information that the decision-maker wants as an output

from the OT&E process. All of the statistical methods described above are limited to

using gathered test data to confirm or deny a hypothesis or effect that can be observed

during the testing. None of the methods just described provide a means to extrapolate to

higher information levels.

13 An Army test range used for Force-on-Force exercises and testing activities.

184



A.2 STATISTICAL MODEL BUILDING TECHNIQUES

Two methods of Statistical Model Building are currently used in the OT&E community:

Time Series Analysis and Regression Analysis.

Time Series Analysis is the study of data gathered from a process over time. For

example, the readings of a gauge controlling a process taken at one minute intervals, the

daily closing prices of the stock exchange, or a measure of yearly crop yields. The

purpose of time series analysis is to model the stochastic mechanism giving rise to an

observed series of data and to predict or forecast future values of the series based upon

historic data from the series [69].

Time Series Analysis techniques are based upon building models from the

previously observed data. These models can fall into one of three categories: moving

average (MA) models are a weighted linear combination of the present and past terms of

a white noise process, autoregressive (AR) models are a linear combination of the most

recent values of itself plus an "innovation" term that incorporates everything new in the

series not explained by the previous observations, and the mixed autoregressive-moving

average (ARMA) model is a linear combination of past observations of the series and of

the white noise terms. These models are built under the assumption that the underlying

process is stationary, (i.e. its statistical characteristics do not change with time).

Nonstationary processes are modeled using differencing techniques, subtracting previous

observations from each other in an attempt to form a stationary process, generating

integrated autoregressive-moving average (ARIMA) models. The amount of overlap used

in the differencing operation is referred to as the lag and usually is chosen because of a

physical significance associated with the data. For example, airline passenger counts

exhibit a cyclical pattern corresponding to the time/season of the year. A time series

model based upon monthly passenger counts might best be treated as an ARIMA model

with lag 12.
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The techniques of Time Series Analysis are used to build models of the observed

test data in the OT&E context, and then subsequently used to predict future performance.

These techniques are especially useful for modeling such phenomena as missile

trajectories or daily message traffic flows through a communication system. However,

the assumption of stationarity is strongly violated by OT&E data that is gathered in a

dynamic environment where few processes can be classified as stationary. For example,

if the missile trajectory being modeled is subjected to electronic countermeasures, the

actual missile flight path would likely deviate from its normal trajectory. Modeling these

types of dynamics in a time series model would be difficult, if not impossible.

Regression Analysis is a statistical tool that is used to build relationships between

two or more quantitative variables such that one variable can be predicted from the

other(s) [70]. In regression modeling, a regression line, curve, or surface is fit to the data

using techniques to minimize the mean squared error between the observations and the

function. Once the model has been developed, it is used to predict the value of the

dependent variable based on the value(s) of the independent variable(s).

The relationships described by regression models have been used effectively for

the analysis of OT&E data. A model is built using early test data, or the desired

performance of the system given in specifications or user's requirements, then

subsequently used to compare predicted performance to actual tested performance of the

system. One recent use of Regression Analysis in OT&E was demonstrated in the area of

human factor performance, where system performance factor measurements were used to

build a regression model, subsequently used to predict human factor effects [71].

Although Time Series Analysis and Regression Analysis provide a means of using

system performance information to build models of future system performance, they

suffer the same shortfalls as other statistical techniques, the inability to extrapolate to

higher-level performance measures or to conditions that were not used in building the

model.

186



A.3 AGGREGATION METHODS

The statistical and statistical model building techniques discussed thus far offer means for

summarizing or modeling system performance seen on the test range or in the laboratory.

None of these statistical methods provide a mechanism for aggregating the collected data

into more meaningful information. Aggregation methods used in OT&E programs to date

have been ad-hoc, or worse, non-existent. Three recent examples of ad-hoc aggregation

schemes developed to provide information to the decision-maker at the appropriate level

are from the Milstar Satellite Communication System, the F-15E Tactical Electronic

Warfare System (TEWS), and the Cheyenne Mountain Upgrade's Alternate Processing

and Correlation Center test programs.

In the OT&E of the Milstar Satellite Communication system, an aggregation

methodology was developed through which any failure of what was termed a "critical"

measure would cause the failure of the entire system. If other than critical measures

failed, a group of test team members got together to make a judgment on the relevance to

system performance. The final pass/fail determination was the only information provided

to the decision-maker [72].

In the F-1 5E TEWS Operational Assessment, a color scheme was used through

which system performance against each threat was given a green, yellow, or red rating.

Then overall system performance was determined by the test team by looking at the

spectrum of colors and making a judgment on overall system performance [73].

The Cheyenne Mountain Upgrade's Alternate Processing and Correlation Center

program provides another example of an ad-hoc aggregation methodology. During the

testing, measurements were taken at the functional-performance level and each was

assessed against its individual requirement, and a pass/fail determination was made for

each. In the final assessment, at the Measure of Effectiveness level (one information-

content level above the functional performance level) the test team looked at the pass/fail

results, considered "other factors" observed during the testing, and made a value
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judgment on the system's effectiveness. These assessments were reported in the final

report to the decision-maker [74].

In other OT&E programs, no attempt has been made to aggregate system

performance further than the individually-measured functional performance level -- the

individual results are reported and the aggregation method is left up to the decision-

maker. Clearly, a more systematic and standardized method for aggregating the low-

level data into high-level information is needed. With a systematic approach, the

decision-maker will be able to come to expect information at a level that is meaningful to

him, and he will not have to struggle to understand the differing methodologies used by

each individual program.

A.4 MODELING AND SIMULATION

The greatest emphasis in the development of new analysis capabilities for T&E has been

placed in the area of Modeling and Simulation (M&S) where an increased emphasis on a

model-test-model paradigm has become prevalent [75]. In the context of T&E, modeling,

defined as the formalized representation of system characteristics, are digital system

models representing varying levels of system performance. Simulation, defined as a time

stepped execution of models used to predict system performance, is carried out using

digital models, hardware-in-the-loop test facilities, and open-air ranges [4]. However, in

the vernacular, the term M&S, or simply modeling, is frequently used, when the term

simulation would be more correct.

Digital models used in T&E are distinguished based upon the level of detail

contained in the model, the type of input/output data used, and the number of players

included in the model as shown in Table A-7 [76].
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Table A-7 Levels of Modeling

Model Category Process Modeled Players Modeled
Campaign Multiple Battles Many vs. Many

Battle Multiple Missions Many vs. Many
Mission Mission Engagement One vs. Many

Engagement System Engagements One vs. One
System Component Functions One Stand Alone System

Engineering & Component Engineering Performance System Components

This modeling hierarchy appears to allow the flow of information from

engineering-level to campaign-level, by using the output of the lower-level models as the

input to the next higher-level model until the answers at the campaign level are

determined based upon component performance. Several issues prevent this from being

the solution to decision-making dilemma faced by OT&E decision-makers. First,

currently each of the models in this hierarchy are separate, developed by different

organizations for different purposes; therefore, there was no thought given to an

architecture that would tie these models together until long after the models were already

developed. Second, in order for the models at the higher level of the spectrum to run in a

reasonable amount of time, many simplifications were made in their development. These

simplifications preclude them from being used as detailed analysis tools, rather, they are

tools for campaign planning once system performance has been quantified. Finally, the

issue of verification, validation, and accreditation (VV&A) of these models is one which

is just now beginning to receive attention. No systematic mechanisms or databases are

available to allow the analyst to determine a model's applicability to the task at hand.

Therefore, although the skeleton of a low-to-high level analysis hierarchy exists in the

digital modeling arena, there are many issues keeping it from being a satisfactory

solution.

Various methods of simulation have been used in the analysis of system

performance for a number of years. Hardware-in-the-loop facilities allow designers to
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understand how their equipment integrates with other system components early in the

design process. Installed-system test facilities, such as anechoic chambers or

electromagnetic pulse facilities, allow the analysis of system capabilities in environments

that the system is likely to see during operation. Open-air test facilities are used to re-

create scenarios that replicate stressing conditions of system operations.

A description of how M&S has been used for the planning and analysis of various

Air Force OT&E programs follows. Shown are four diverse examples of recent M&S

activities within the AF OT&E community. They show how (1) an engagement-level

model was used for analysis that could not be carried out through testing, (2)

engagement-level models were used to extrapolate existing test data to untestable

conditions, (3) mission-level models will be used to evaluate mission impact of system

performance, and (4) hardware-in-the-loop facilities and mission-level models have been

used together for test planning. The reader will note that the emphasis of M&S in OT&E

is concentrated at the engagement and mission level; however, other than that

commonality, there is no other recurring theme in the following discussion. The current

state of M&S activities within the OT&E community can best be described as haphazard

and disjoint -- there is no "standard" use of M&S within the community. Frequently, it is

found that M&S is carried out simply to "fill a square" that the analyst believes the

decision-maker wants to see filled rather than to address valid analysis objectives.

Additionally, there are no "standard" models or VV&A activities that have been

accomplished to ensure the model being used is adequate for the task. Therefore, much

of the OT&E community's time is spent in verifying that a model will fulfill analysis

needs, rather than spending time on actual analysis activities using the model.

An example of how an engagement level model was used to perform an analysis

that could not be carried out through testing is seen in the Short Range Attack Missile

(SRAM) II program. This M&S effort used the Enhanced Surface to Air Missile

Simulation (ESAMS), an engagement-level model, to evaluate the missile's survivability

against enemy surface to air missiles [77]. The SRAM II was an improved version of the
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original SRAM system, offering stealth capability to allow the missile to penetrate enemy

air defenses. The stealth characteristics could not be field tested, instead they were to be

evaluated through simulation. ESAMS simulated the engagement between the SRAM

and the Surface-to-Air Missile (SAM), determining if a kill occurred based upon the

engagement geometry, threat kill potential, and various other factors modeled within

ESAMS. A grid of SAM locations was modeled around a simulated target. Using

ESAMS, the SRAM and SRAM II were flown over the grid to attack the target. Each

SAM location that engaged and killed the SRAM or SRAM II was added to the footprint

for that scenario. At the conclusion of the model runs, the size of the footprints were

compared -- a smaller footprint indicated a more survivable missile. Initial model runs

had been accomplished in an effort to calibrate the ESAMS model when the SRAM II

program was terminated by President Bush's 1991 Strategic Drawdown Initiative.

The B-1B Defensive Avionics System (an Electronic Countermeasures (ECM)

system designed to protect the B-lB from attacking SAMs) provides an example of how

engagement level models are used to extrapolate field testing data to conditions that can

not be tested. The testing program's goal was to evaluate the Defensive Avionics

System's capabilities and assess its contribution to B-lB survivability [78]. The measure

used to determine the ECM effectiveness was missile or projectile miss distance from the

B-lB. The test data were collected using a "golden bird" aircraft which played the role of

the missile in the engagements with the B-lB. The golden bird aircraft carried an

instrumentation pod to collect data indicating relative location of the target aircraft to the

golden bird aircraft and a captive carry missile system provided guidance for the aircraft

by indicating where the missile seeker was "looking" relative to the target aircraft. The

information that could be derived from flight testing was limited due to restrictions on

safety of flight considerations, limited test environment terrain, and unavailability of

threat seekers; therefore, the M&S effort was used to extrapolate results to other launch

conditions, terrains, and threat systems. Flight test data were collected and provided to

the model developer for a comparison of model and field testing results to calibrate the
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models to replicate the field testing environment, and to gain confidence in the model for

extrapolation activities. The data comparison (which represented the bulk of the effort)

highlighted capabilities and limitations of the engagement-level models for an application

of this type. Once the analysts were aware of the models' capabilities, the models were

used to evaluate the system performance in the untestable conditions.

The OT&E concept for the B-lB Electronic Countermeasures Upgrade program is

currently being developed at the Air Force Operational Test and Evaluation Center

(AFOTEC). The test concept calls for the use of simulation for two purposes -- to assist

in test criteria development and to extrapolate field testing results to mission level

performance [79]. The Cost and Operational Effectiveness Analysis (COEA), a study

accomplished to evaluate cost and mission tradeoffs, is currently being accomplished by

the Institute for Defense Analysis (IDA). The COEA will analyze the missions that the

B-1B, equipped with the new ECM system, is expected to perform, and make an

assessment of the impact on mission accomplishment with varying performance values.

The analysis will define critical measures of effectiveness that impact the mission

accomplishment of the new system. These critical measures of effectiveness will form the

basis for the test evaluation criteria. To develop test scenarios, AFOTEC planners will

begin with the COEA-modeled scenarios, which represent many simultaneous B-1B

missions, and separate each individual mission package from the overall scenario. Each

mission flight profile will be compared to the threat asset layout available on the test

range, and several test scenarios will be chosen which come closest to the model

scenarios. The COEA model will be run using the planned test scenario (i.e., deleting

threat systems from the modeled scenario that are not available on the test range) with

expected system performance to predict mission outcome. This will provide final system

performance values for the test range scenarios that must be met in order for the system to

meet mission performance requirements. At the conclusion of testing, the actual

measured system performance will be used in the COEA model to predict mission-level

performance.

192



The F-22 Advanced Tactical Fighter program provides an example of simulation

using hardware- in-the-loop (HWIL) facilities in conjunction with mission-level digital

models to evaluate system performance and assist in the test planning [80]. The Office of

the Secretary of Defense mandated a requirement that the F-22 must be twice as good as

the F- 15 in open-air testing. However, no specifics of what measures must be taken, or

what "twice as good" meant were given. To determine what testing should be planned,

AFOTEC used a combination of HWIL and digital models to evaluate candidate

scenarios for use in the comparison test. Two mission-level models were used to evaluate

the scenarios and highlight system sensitivities that should be examined. The Lockheed

Full Mission Simulator, consisting of a two-dome system with an F-22 cockpit, a

modified F-15 glass cockpit, Manned Interactive Control Stations (MICS) for adversary

pilots, Ground Control Intercept (GCI) capability, and Integrated Air Defense System

(IADS) capability, was used to evaluate the man-in-the-loop impacts of the candidate

scenarios. The simulation was accomplished for a number of reasons; to evaluate: 1)

man-in-the-loop response to scenarios developed using digital models, 2) F-22

performance relative to the F-15, 3) potential test measures to be used during OT&E, and

4) range requirements and open-air testability. This effort provided a number of valuable

lessons in the use of M&S in OT&E and highlighted many F-22 system performance and

M&S issues that will be used to improve and streamline future testing and analysis

efforts.

These brief examples were meant to point to the variety of ways M&S has been

used in the planning and analysis of recent OT&E programs. The National Research

Council states "It seems clear that few if any of the current collection of simulations were

designed for use in developmental or operational testing [68]." The Council raises the

concerns that (1) rigorous validation of models and simulations for operational testing is

infrequent, and external validation is at times used to overfit a model to field experience

and (2) there is little evidence seen for use of statistical methods to help interpret results

from simulations. Thus, although the M&S arena seems to offer a method for dealing
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with many of the inadequacies of current analytical methods, it too falls short in many

respects.
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APPENDIX B

FUZZY SET AND FUZZY LOGIC

This Appendix describes the basics of fuzzy set and fuzzy logic theory. In it, how fuzzy

sets and crisp sets differ is discussed; the concepts of fuzzy membership functions and

fuzzy set operations are defined; linguistic variables and their modification through

hedges, connection and negation operators are described; fuzzy inference mechanisms

and defuzzification schemes are described; fuzzy logic's use in control applications are

briefly highlighted.

B.1 SET THEORY: CRISP AND FUZZY

As one progresses through a typical secondary school's mathematical education, every

school year from Junior High School forward begins with it a study of set theory. In

those early math classes the concept membership of a set is illustrated. A member

belongs to a set. Membership is designated by the symbol, E, while 0 designates "not a

member of." In standard sets, membership is easy to define -- an element either is, or is

not, a member of the set. As an example, in the set, S = {3, 5, 7, 9}, 3c S and 40 S. A

fuzzy set does not draw such a hard distinction between membership and non-

membership, the boundaries between membership and non-membership are gradual and

the concept of partial membership within a set is permitted.
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B.2 MEMBERSHIP FUNCTIONS

An element in a fuzzy set is characterized by it membership function value -- the degree

to which the set label characterizes the element. The membership function value, YA(x),

describes the degree of membership for the element, x, within the fuzzy set, A. The

values of a membership function range on the interval [0,1 ]; the closer the value is to

unity, the more the attribute associated with the fuzzy set describes the element. More

formally [81],

Definition: A fuzzy set, A, on the given universe X is that, for any x( X,

there is a corresponding real number pA(x) e [0,1] to x, where IIA(x) is

called the grade of membership of x belonging to A.

There is a mapping,

YIA:U - [0, 1], u [-- YA() (B-1)

which represents the membership function of the fuzzy set A.

Membership functions can take on a variety of regular shapes including linear,

triangular, trapezoidal, Gaussian, sigmoidal, or PI-shaped curves. In addition,

membership functions may take on irregular shapes based on the data used to generate

them, such as a bimodal or other "non-normal" distributions. Example membership

function curves, the equations which generated them, and sample applications are

discussed below.
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B.2.1 SIGMOIDAL CURVE

A curve that makes a smooth transition from no membership to full membership with an

inflection point at the 50% membership value is the s-curve, sigmoid, or logistic curve. It

is defined by three parameters: its zero membership value (ai), its complete membership

value (y), and its inflection point (13). The functional representation of the s-curve [82] is

shown in Equation (B-2).

0 forx < a

2( x-a)2  for a!<x <fi

S(x; a, f, ) = a( B-2)
1- 2 (x-a) 2 forf3 x<y

y-a
1 forx >,y

The s-curve resembles a continuous Cumulative Distribution Function (CDF), the

probability that a given point X is less than or equal to a point y in the underlying domain.

F(y) = Prob (X < y) (B-3)

The CDF can be easily built as a cumulative histogram of data points from the collected

test data; thus, this membership function can be built directly from collected test data.

This type of curve is used to represent a variety of dynamics that can be approximated as

a continuous random variable, such as:

- the speed of an aircraft

- the mean time between failure of a component

- the inter-arrival time of messages in a communication system.
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B.2.2 THE P1 CURVE

A P1-curve provides a smooth transition in both directions from a central value, where the

membership value is unity, to the two points in the domain where the membership values

are zero. The symmetric PI-curve is centered on the value from the domain with

membership value of unity (y) with a single parameter that indicates the width of the

curve's base (n), and is constructed using two sigmoidal curves, as

-(X;f (; - f, - f 1 2,y) forx_<(-
L1-S(x;y,y+fl/ 2 ,y+13) forx<y (B-4)

Although the shape and characteristics of the PI-curve are quite similar to the

Gaussian curve, there is one important distinction which makes the PI-curve a better

choice for a membership function. The PI-curve's membership value becomes zero at a

discrete and specified point, it is not asymptotic as is the Gaussian curve. This feature

provides a closed domain of values for each membership function, a desirable

characteristic.

Although the PI-curve does not exactly replicate the Gaussian, it can be used to

approximate system characteristics that can be approximated by the Gaussian curve, and

thus, be built directly from gathered test data. Braae and Rutherford [83] suggested the

use of the triangular membership function when sensor measurements are contaminated

with noise, using the vertex as the mean and the base as the standard deviation. In OT&E

data, the Central Limit Theory dictates that most of the performance can be approximated

by a Gaussian or Normal Probability Distribution Function (PDF), therefore, it might be

even more applicable to use Braae and Rutherford's idea of using the vertex as the mean

and the base as the standard deviation and apply that standard to the selection of 3 and ,

in the PI-curve membership function.
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B.2.3 OTHER MEMBERSHIP FUNCTIONS

The s-curve and the PI-curve are appealing for their similarity to standard statistical

distributions, with which the decision-makers are most familiar. However, there are other

membership functions that are more commonly used, and which will be used, at least

initially, in this work for their ease of mathematical manipulation. These membership

functions are described briefly below.

B.2.3.1 LINEAR MEMBERSHIP FUNCTIONS

The linear membership function is probably the easiest membership function, and can be

used when the range of the domain is known, but when the characteristics of the

underlying distribution are not well understood. As the name suggests, the membership

function goes from a point of zero membership to a point of full membership in a straight

line fashion. The linear function can be either increasing (positive slope) or decreasing

(negative slope) as it ranges from the beginning point to the ending point in the domain.

B.2.3.2 TRIANGULAR MEMBERSHIP FUNCTIONS

The triangular membership function, popular in fuzzy control applications, consists of a

triangle with the vertex at the point where membership value equals unity and the base

spanning the domain of the set. The triangular membership function provides an easy

functional form and a relatively smooth transition from the various values of the

membership function.
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B.2.3.3 TRAPEZOIDAL MEMBERSHIP FUNCTIONS

Another popular membership function for fuzzy control and model building applications

is the trapezoidal function. Its shape, as the name suggests, is a trapezoid with the sides

going from the points of zero membership function value to the full membership function

value. The region where the membership value equals unity is expanded in the

trapezoidal function from that provided in the triangular function.

B.2.3.4 IRREGULAR-SHAPED FUNCTIONS

Finally, underlying data distributions or physical significance may drive the creation of

membership functions exhibiting irregular shapes. For example, a membership function

of high driving risk would be bimodal with one peak in the teenage years when daring

and bravado dictate driving style and another peak in the octogenarian years as poor sight

and slow reaction times take over as the dominant style.

B.3 FUZZY SET OPERATIONS

Basic crisp set operations are limited to three operations: intersection, union, and

complement. Fuzzy sets complementary operations were originally introduced by Lofti

Zadeh. As other researchers have applied fuzzy theory, slight modifications have been

made, first using algebraic manipulations of the original functions, then using other

transformations known as compensatory operators. In addition to the basic operations of

intersection, union, complement and exclusive-or, because of the unique nature of the

membership function of a fuzzy set, other operations can be performed on fuzzy sets

which have no meaning in the crisp set world. These operations include concentration,

dilation, contrast intensification, and ox-level set creation. This section describes the basic

and unique operations of fuzzy set theory.
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B.3.1 ZADEH BASIC FUZZY SET OPERATIONS

The union [84] of two sets A and B, designated {A u B} in standard set notation and {A

v B } in fuzzy set notation, results in a set C which contains all the members that were in

either set. It is analogous to the OR operation in Boolean logic. The union of two fuzzy

sets, A and B with membership functions /IA(x) and IB(X), is a fuzzy set C with

membership function:

JUC(x) = Max(PAWx),411x)) =/UA (X) V/ZB(X) ( B-5)

The intersection [84] of two sets A and B, designated {A n B} in standard set

notation and { A A B } in fuzzy set notation, results in a set C containing only the members

that were in both sets; analogous to the AND operation in Boolean logic. The

intersection of the two fuzzy sets, A and B, creates the fuzzy set C with membership

function:

yc(X) = Min(uA(X), g9B(X)) =MUA(X) A MB(X) (B-6)

The complement [84] of a fuzzy set A with membership function MA(x) is given

by the set -A

Y-A WX = -UA WX ( B-7)

An interesting distinction between fuzzy and crisp set theory relates to the

complement operation. In crisp set theory, the Law of Noncontradiction states that the

intersection of a set and its complement is the empty set (i.e., Af -A 0). However, in

fuzzy theory an element can have a degree of membership in both a set and its

complement due to the possibility of overlapping regions of the membership functions.
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The Law of the Excluded Middle, stating that the union of a set with its complement

results in the universal set of the underlying domain (i.e., A U A - U), is also violated by

fuzzy sets. Alternative definitions of the complement operator are needed if the

maintenance of these laws is important.

B.3.2 ALGEBRAIC FUZZY SET OPERATIONS

Fuzzy set researchers have developed alternative definitions for fuzzy set operations, to

those proposed by Zadeh. These alternatives fall into two categories -- general algebraic

operations and functional compensatory operations. The discussion that follows

introduces the alternative definitions and describes their distinction from, and advantages

over, the standard operations.

B.3.2.1 THE MEAN OPERATORS

The fuzzy set, C's, membership function resulting from the fuzzy mean intersection [82]

of fuzzy sets A and B is

c W .A(x) + + B (X)
2 (B-8)

This definition can be extended to the intersection of any number of fuzzy sets, simply by

calculating the mean of their respective membership functions. This operation can be

used instead of the standard intersection operator when it is desired that extreme values

not have an undue influence on the outcome of the operation.

In the fuzzy mean union operation, a beta distribution is used to determine the

most likely outcome, similar to the best estimate calculation used in PERT activity time

estimates. In the PERT estimate the best probability date is given by
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a+4m+b
T 6

By setting a = b, the syntax for the fuzzy mean union [82] operator results, as

2 * min(PA (x),MB (x)) +4 * max(MA (X),MR (x))
6 (B-9)

B.3.2.2 THE PRODUCT OPERATORS

The product operators, as their name implies, involve the multiplication of membership

functions. These operations will give a different value for each different pair operated

upon, which is not the case for the strict minimum and maximum operations. This allows

the operation to exhibit a characteristic of sensitivity or responsiveness to changes in one

of the membership functions. Having this characteristic allows a more realistic modeling

of time-varying processes.

The product intersection [82] is given by:

14C Wx = PA Wx */ B Wx ( B-10 )

Theproduct union [82] is given by:

/. C (x) = [MA (X) +/ (X)] -[/A (x) * (X)] (B-11)

B.3.2.3 THE BOUNDED SUM OPERATORS

If the objective is to create a filtering mechanism with the fuzzy set operation, the

bounded sum operators can achieve that objective. The bounded sum intersection and

bounded sum union [82] operators are given respectively as:
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yc (x) = max[O, A (x) +B (x) - 1] (B-12)

,uc(x) = min[1,/'A Wx + (x)1 ( B-13 )

The bounded sum intersection operator is highly selective: unless the combined

membership functions of the two components exceeds unity, the resulting membership

function value equals zero. This function is similar to a neural network activation

function that does not have enough of a value to activate the neuron. The operator acts as

a hurdle in the intersection space. This type of operation may prove appropriate for the

analysis of systems where performance below a certain threshold is absolutely

unacceptable. This situation arises in the OT&E of such systems as aircraft emergency

escape systems or nuclear system fail-safe mechanisms where a certain minimum level of

performance must be guaranteed.

On the other hand, the bounded sum union operator is overly accommodating. If

the combination of the two constituent membership functions exceeds unity, the operator

returns a value of unity -- it establishes a low membership hurdle within the union space.

This operator may be appropriate for the analysis of systems where the risk of making the

wrong decision is small. This situation may occur in a number of instances in OT&E

analysis. For example, the testing of a system which is an upgrade of a current system

based upon proven technology, the testing of a system where cost is not a major factor, or

the testing of a new system that is fulfilling a need that is currently going unfulfilled -- the

case where any kind of performance is better than what is currently available. All of

these instances illustrate cases where the bounded sum union would be an attractive

choice for combining the membership functions.
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B.3.3 FUNCTIONAL COMPENSATORY OPERATORS

Table B-2 provides examples of functional compensatory operators created by fuzzy

logic researchers [85]. All of these operators depend on a parameter, called here k, which

can be varied to change the characteristics of the operator. In most cases, by changing the

value of the parameter, the operator can be softened or hardened with respect to the

standard minimum and maximum operations.

Table B-2 Functional Compensatory Union and Intersection Operators

Researcher Intersection Union
1 1

Yager 1 -min[1, (1 -a) k + (1 - b) k ) k min[ 1, (a k +b b k )k]

Dubois & Prade ab a +b - ab- min[a,b, 1 - k]
max[a,b,k] max[l-a,l-b,k]

Schweizer & _-
max[,ak +bk -1] k 1-max[O,((1- a)k +(l-b)k -1)] k

Sklar

These parameterized functions, and those similar to them proposed by other

authors, have been used in applications where the standard Zadeh or algebraic operators

were not suitable. As the work here progresses a determination will be made as to the

most appropriate operators for the task. The principle of parsimony will be applied --

first the simple Zadeh operators will be used to see if their performance is adequate, then

other more difficult operators will be subsequently tried until acceptable performance is

reached.
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B.4 LINGUISTIC VARIABLES

Linguistic variables are common language terms used to describe fuzzy sets [86].

Linguistic variables can include such terms as small, medium, large, short, tall, close, far.

Each of the membership functions described above would be assigned a linguistic

variable to aid in the humanistic reasoning perspective of working with fuzzy sets. Using

linguistic variables allows, for example, control rules to be written in common language

phrases that an operator could provide, such as "if the slurry is yellowish in color, add a

little more of chemical xyz." In this brief example, yellowish and a little more represent

fuzzy linguistic variables for the control variables color and amount.

B.4.1 LINGUISTIC VARIABLE HEDGES

A hedge modifies a linguistic variable through a change in the shape of the membership

function values using operations such as contrast intensification, concentration,

dilution, and other operations that transform the membership function values. Table B-2

[82] gives an overview of hedges that are used and their approximate meaning, while

Section B.4.2 gives definitions for the operations associated with some of the hedges

listed here.

Table B-2 Linguistic Hedges and Their Meanings

HEDGE MEANING

about, around, near, roughly Approximate a scalar
above, more than Restrict a fuzzy region
almost, definitely, positively Contrast intensification
below, less than Restrict a fuzzy region
vicinity of Approximate broadly
generally, usually Contrast diffusion
neighboring, close to Approximate narrowly
not Negation or complement
quite, rather, somewhat Dilute a fuzzy region
very, extremely Intensify a fuzzy region
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B.4.2 CONCENTRATION, DILATION, AND CONTRAST
INTENSIFICATION

Operations that are unique to fuzzy sets (i.e., have no meaning in the crisp set world)

include concentration, dilation and contrast intensification [10]. These operations serve

to change the shape of the fuzzy membership functions, and are the basis for hedges of

fuzzy linguistic variables.

The operation of concentration is defined as

CON(A) - A2  (B-14)

This operation has the effect of decreasing the membership function values for the

members of the fuzzy set. However, the decrease is not uniform across the set. The

concentration effects the members with higher membership function values less than

those with low membership function values. For example, if the discrete fuzzy set A is

defined, using the union of fuzzy singleton notation, as

A = 0.4/1 + 0.6/2 + 0.8/3 + 1.0/4 + 0.8/5 + 0.6/6 + 0.4/7 + 0.2/8

then the fuzzy set CON(A) or A2 would be equal to

A2 = 0.16/1 + 0.36/2 + 0.64/3 + 1.0/4 + 0.64/5 + 0.36/6 + 0.16/7 + 0.04/8

The concentration operator with the exponential value of 2, is commonly

associated with the hedge very. So, for the example shown above, the fuzzy set CON(A)

or A2 would be associated with the hedged set very A.

The operation of dilation is defined as

DIL(A) =A 5  ( B-15)
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The effect of the dilation operator is the opposite of the concentration operator; it dilutes

the value of the membership function more for those elements with large membership

functions and less for those with small membership functions.

Although no strict hedge/dilation relationship is given for an exponential value of

0.5, hedges, somewhat, quite, or rather could be associated with the DIL operation.

Milder degrees of concentration and dilation than those given by the strict CON and DIL

operations are associated with the hedges plus and minus, defined in [10], as

plus x X121( B-16)

minus x x( B-17)

Finally, the operation of contrast intensification increases the values of the

membership function for those members with a value above 0.5 while simultaneously

decreasing the values for those elements with a value below 0.5. This operation can be

thought of one which reduces the fuzziness of the set it is applied to and can be associated

with the hedges almost, definitely, or positively. The definition of the operation is

{= 2A 2  for0<PA(X)<0.5
INT (A ) 2(- A) 2  for 0.5 < PA(X) 1.0 (B-18)

B.5 FUZZY INFERENCE

Inference is the process through which conclusions are drawn, or decisions are made,

based upon the information at hand. There are many methods of drawing inferences.

Here, two are discussed: compositional rules of inference, based on combining fuzzy

sets using mathematical means, and syllogistic reasoning, which bases conclusions on the

satisfaction of premise statements.
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B.5.1 COMPOSITIONAL RULES OF INFERENCE

In the literature on fuzzy logic control applications, inferences are made using

compositional rules of inference. Once a rule base has been established (usually through

consultation with a human operator who provides heuristic control rules in linguistic

form) the input is used to determine which rules within the rule base 'fire'. Once the

applicable rules are identified, a compositional method combines the rules' outputs into a

single fuzzy set output, which is later defuzzified to provide the crisp output value. There

are many different compositional rules of inference; however, the most popular is the

min-max compositional rule, due to Mamdani [87], shown below to relate -lB(y) to ,UR(xy)

and JLA(X)

MB(Y) = maxmin(a (X),R(x, Y)) (B-19)x

This compositional method requires that the relationship between fuzzy sets A and

B be established, which can be done through a variety of means. Mamdani suggests

either a minimum (B-20) or a bounded sum operation (B-21) be used to construct this

relation as

MR(XY) = min[YuA(x),YB(y)] (B-20 )

or

/IR(XY) = min[1,(1-,MA(X) +JUB(y))] (B-21 )

Once the relationship is developed it can be used to determine outputs for any

desired input values based upon the same relational condition. Consider the example of
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two fuzzy sets A of X and B of Y, both discrete and finite, with vectors of membership

function values given as

A =[ 1, 0.8, 0.6, 0.2, 0, 0.3]

B = [0.1, 0.2, 0.3, 0.4, 0.5]

The relationship between A and B can be formed using the minimum operation as

0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.3 0.4 0.5
RA->B = 0.1 0.2 0.2 0.2 0.2

0 0 0 0 0
0.1 0.2 0.3 0.3 0.3

Once this relationship is established, if an input vector, say A' which is "similar to" A has

the same relative relationship to B, RA.B can be used to draw the inference on what the

resulting B' should be, as

B'= A'ORA>B (B-22)

So, in the example, if

A' = [0.9, 0.8, 0.5, 0.2, 0 0.2]

then

B' = [0.1, 0.2, 0.3, 0.4, 0.5]

Which is formed, using the first element as an illustration, as
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max [ 0.9A0.1, 0.8A0.1, 0.5A0.1, 0.2A0.1, OAO, 0.1AO.2] = 0.1

Using this method of inference, if input/output information exists, a relationship

can be developed which is subsequently used to draw inferences for similar

circumstances. This form of inference is used when test data can be gathered to help

define these relations. If the relationship cannot be defined, other methods of inference

such as syllogistic reasoning, which forms the basis for inference in most current expert

system applications, must be used.

B.5.2 SYLLOGISTIC REASONING

Syllogistic reasoning is defined as a form of deductive reasoning consisting of a major

premise, a minor premise, and a conclusion. For example,

icy roads are slippery (major premise)

slippery roads are dangerous (minor premise)

icy roads are dangerous (conclusion)

Fuzzy syllogisms are of the general form [88]

p -QIA's are B's

a -0 2C's are D's (B-23)

r QE's are F's

where p is a fuzzy proposition containing a fuzzy quantifier Q and fuzzy predicates A

and B; the second premise, q, is a fuzzy proposition containing a fuzzy quantifier Q2 and
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fuzzy predicates C and D; and the conclusion r is a fuzzy proposition containing a fuzzy

quantifier Q and fuzzy predicates E and F.

The most common and important syllogisms are shown below, where A denotes

conjunction or intersection (AND) and v denotes disjunction or union (OR). These are

given without any restrictions on the relationships between A, B, C, D, E, and F. If

assumptions are made on those relationships, then statements can be made as to the

relationships between Q, Q2 and Q1.

Intersection/Product Syllogism

if: C=AAB then: E=A,F=CAD

and Q = Q 0 Q2 (B-24)

where 0 denotes fuzzy set multiplication.

Chaining Syllogism

if: C=B then: E=A,F=D

if: BcA thenQ>Q,®Q2  
(B-25)

where > QJ ( Q2 is read as "at least equal to" Q1 ( Q2.

Consequent Conjunction Syllogism

if: A=C=E then:F=BAD

and [Ov(QIGQ2E1)]<Q<[Q1AQ2] 
B-26
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where 0 denotes fuzzy set subtraction.

Consequent Disjunction Syllogism

if: A=C=E then:F=BvD

and [OV(QI@Q20 1)]<Q<[QAQ2] B-27

Antecedent Conjunction Syllogism

if: B=D=F then:E=AAC (B-28)

For the antecedent conjunction case, an assumption is made that each proposition is

independent. This can be phrased in terms of the sigma-count, a means of accounting for

cardinality in fuzzy sets. The sigma-count is defined as the real number, rounded to the

next highest number if necessary, that is the sum of all the membership function values in

the fuzzy set. For the fuzzy set A

_ count (A)= ]i( B-29)

The relative sigma count between two fuzzy sets can be interpreted as the number of

elements in one set that are also in the other. Between the two sets A and B, the relative

sigma count, denoted 2_count(B/A), is the proportion of elements of B in A

Icount(BrA) XJLLB(Xi)A/.LA(Xi)

_count(B/ A)- = count(A) Y (B30)~coun(A) ILa (Xi)

i
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Then, the independence assumption may then be written as

Scount( - ) =- count(A) count(B) (B-31)

Alternatively, in terms of a count referred to as the psigma-count, which is a ratio of the

members of a set to the non-members of the set, defined as

p. sigma(B) count(B) (B-32)
scount(B)

Using this measure, the antecedent conjunction syllogism quantifier, Q, becomes

Q=R 1 ®R 2 ® R 3  (B-33)

where the ratios, Ri's, are defined as

C Xcount(CI A)
R1 =p count(oun) I = ratio of C's to non-C's among A's

A Xcount(C IA)

C Xcount(CIB)
R2 = p count(-) = count(C/B) - ratio of C's to non -C's among B's

B 1: count( )

R3 = p, counlt(C) = count(C) ratio of C's to non- C's

>count(C)

where the syllogism has been redefined using the notation shown below, due to the

equalities defined in (B-28).
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QIA 's are C's

Q2B's are C's

Q(A and B)'s are C's

B.6 DEFUZZIFICATION SCHEMES

The basis of fuzzy logic's appeal is its ability to consider the uncertainties and gradual

transitions associated with the membership functions. However, giving a solution that

includes an entire region of the domain space, or is a fuzzy set itself, may not be

acceptable. For example, when using fuzzy logic for control applications, the controller

needs a single, or crisp, value to use as the control input -- the controller hardware would

not know how to handle a fuzzy set control input value. Thus, there is a need to defuzzify

the results of the fuzzy inference procedure to provide a crisp answer at the end of the

process. Defuzzification finds the value that best represents the information contained

within the fuzzy set. Various defuzzification methods have been suggested in the

literature, several of the most common are discussed below.

The most popular defuzzification scheme is the Center of Area Defuzzification

Method. Using this method, the centroid of the fuzzy membership function is calculated,

and the domain value associated with that centroid is used as the crisp result. The center

of area is calculated as [89]

p
pjYjl-tB(Yj)

COA = j=1Y ( B-34)

jJB (Yj)
j=1

This is a popular method of defuzzification because the fuzzy centroid is unique and

considers all the information in the fuzzy set distribution. For the case where the fuzzy
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sets are continuous, the summations are replaced with integrals, but the basic form of the

equation remains the same.

Another common defuzzification scheme is the Mean of Maxima Defuzzification

Scheme. This method depends on finding the domain value having maximal membership

grades. It is calculated as

yMOM 1--,y

q j j( B-35)

where J* is the set of elements of the universe with the maximum membership function

value and q is the cardinality of J*.

Finally, the Method of Heights Defuzzification Method uses the members of the

set which attain a level of membership greater than a given a-cut to calculate the crisp

value. The a-level set, Aa, is defined as [90]

A. = [Xi  .Y a (Xi) ! 0a} 0 !! a{ ! 1, x i E X, i = 1,2..., n ( B-36)

Then, the Method of Heights Defuzzification Method is defined as, the Center of Area

Defuzzification Method using only those members of the domain that are a member of the

a-level set. The crisp value is defined as

YA (Yi)
yMOH = iEA

Y, YA (Yi) (B-37)
iGAa

Other defuzzification methods have been suggested [82], including average of the

maximum plateau defuzzification, average of the support region defuzzification, far edge

of the support set defuzzification, near edge of the support set defuzzification, and center
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of the maximums defuzzification. These methods offer slight deviations from the standard

methods described above, and may prove applicable for a given application. However, as

with the choice of a membership function, the methodology will be examined for

adequacy using the standard defuzzification techniques before any of the alternative

methods are applied.

B.7 FUZZY CONTROL

The problem being addressed with this research is not a controls problem. However, this

section will briefly review the structure of fuzzy control because the current literature is

rich with examples of fuzzy control applications and if one steps back from the problem

at hand for a moment and compares it to a standard control problem, some striking

similarities will be noted. For example, the methodology of defining the indicative

variables, fuzzifying those variable, performing an inference procedure, and defuzzifying

to get a crisp control action can be translated almost intact to the analysis task.

A standard control system uses a control law based upon differential equations

which are a function of previous output and control input values. A fuzzy logic controller

uses a control law based upon a knowledge-based system containing rules in IF ... THEN

form. This knowledge base is built using linguistic variables from the actions that a

human controller might use to control the process. Once the knowledge base is built, it

can be used as the basis of the inference process, to control the process using the

following steps:

- Find the firing level of each of the rules

- Find the output of each of the rules

- Aggregate the individual rule outputs to obtain the overall output.

- Defuzzify the output to find the crisp control value
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A relevant example that ties control and analysis/diagnostic work together is the

work done by Boeing Corporation researchers in developing a combined neural network-

fuzzy logic system to identify and diagnose performance on jet engines [91 ]. The

diagnostic and control system uses a neural network, trained to provide normal

component performance under differing input conditions, to provide the "normal"

performance measure. The actual system performance and the neural network

performance under the same operating conditions are compared to provide a system error

measurement. The system error measurement is run through a delay unit to create a

change in error measurement. The error and change in error are provided as inputs to the

fuzzy logic unit, which is composed of a knowledge-base outlining control actions

required for various combinations of error and change in error states. Each individual

fuzzy logic unit provides a control action recommendation for its component as input to

an aggregation fuzzy logic unit, which serves as an aggregation and defuzzification

mechanism to take the individual control actions and the previous overall control action

and provides a single, crisp control action for the entire engine system as output.
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APPENDIX C

FUZZY COGNITIVE MAPS

C.1 CONCEPTS AND RELATIONSHIPS

A cognitive map is a representation of relationships between elements in an environment

[92]. Each node in the map represents a concept or element, and the relationships

between the nodes are defined by directed arcs connecting the nodes. The relationships,

either excitatory, inhibitory, or neutral; are represented by the edge values connecting

associated nodes in the map. An edge value, denoted as ei1, relating concept Ci and Cj,

lies in the fuzzy [-1, 1] interval and takes on values in [-1, 0) indicating a negative

causality (i.e., an increase in Ci will result in a decrease in Cj), values in (0, 1] indicating

a positive causality (i.e., an increase in Ci results in an increase in Cj ), and a value of

zero if there is no causal relationship between the concepts. The original cognitive maps

suggested by Axelrod only allowed edge values of {-1, 0, +1 } to describe the relations

between concepts; two concepts were related through a positive causality, a negative

causality, or had no relation. Kosko's work extended the original theory to allow fuzzy

values or fuzzy linguistic terms to describe the relations between concepts.

Kosko defined a fuzzy causal algebra to describe concepts and their causal

relationships [93]. He defined a concept C as the fuzzy union of some fuzzy quantity set

Qi and its associated dis-quantity set -Qi, thought of as the logical fuzzy set complement,

as
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Ci = Qiu - Qi (C-1)

Then Kosko defined the causality relationships as

Ci causes C iff [( Qi c Q ) AND (-Qi c -Qj

Ci causally decreases Cj iff [( Qi c -Qj ) AND (-Qi c Q1)]

where c indicates fuzzy set inclusion. The degree of subsethood of Ci in Cj, or the

fuzzy set membership of concept Ci in concept Cj's fuzzy power set, is then used to

define the fuzzy edge values, as

ei, = (Ci, C J) = U l F2c) (C)( C-2 )

Although this theoretical framework for defining causality exists, most

applications of FCMs, including the one proposed here, depend on gathering expert

judgment to define the edge values. The FCM is developed by extracting expert opinion

to identify possible key results or influences for the problem at hand [94]. Once the key

factors are identified, the expert identifies the causal relationships between the factors,

drawing a FCM in diagram form as shown in Figure C-1, which relates vehicle speed, to

police patrol frequency and accident rate.
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+ 0.2 + 0.5

Patrol Accident
Frequency Rate

-0.8

Figure C-i Simple Fuzzy Cognitive Map

This simple map shows that as the vehicle speed increases, the patrol frequency

and accident rate also increase, a positive causality between these factors. It also shows

that as the patrol frequency increases, both vehicle speed and accident rate decrease,

illustrating an inhibitory relationship. There is no limit to the size of an FCM; as many

factors as are applicable to the situation may be included and interrelated. The

relationships in an FCM may be developed as a result of simple expert opinion, or as a

result of data gathered on the relative effects of the factors. In either case, after the FCM

diagram is developed, an adjacency or connection matrix is defined to house the

relational values between the concepts.

The adjacency matrix represents the causal edge functions of the FCM. The

adjacency matrix for the FCM shown in Figure C-1 is

o  0.5 0.2
F= 0 0 0(C-3)

[-0.8 -0.8 0]
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Section C.2 discusses how FCMs gathered from various sources can be combined

to form a single, global FCM, thus allowing consideration of various experts' opinions

and information from other data sources in the decision-making process. Once that

concept is illustrated, and a thorough understanding of the source of the cognitive map

has been gained, Section C.3 will show how the adjacency matrix is used to draw

inferences based upon the information coded in the FCM.

C.2 COMBINING INFORMATION FROM DIVERSE
SOURCES

While expert systems built using a tree structure suffer from a severe limitation in their

ability to combine information from diverse sources, FCMs readily combine. The FCM

structure allows combination of individual FCMs to form a global FCM through an

augmentation, and if desired, weighting process. Each individual FCM, contributed by a

different expert or data source, can include different conceptual nodes. To combine the

FCMs, each individual FCM is augmented to include a row and a column containing all

zeroes for all concepts included in other FCMs not included in that FCM. Once all the

FCMs have been augmented, they are simply added together, using matrix addition to

yield a global FCM. Although none of the current literature discusses a normalization

step after the FCMs have been combined, that seems a logical concluding step resulting in

a FCM with edge values falling within [-1, 1] exclusively.

The resulting global FCM is potentially a more reliable information source than

any of the individual FCMs because it is derived from a variety of sources, making the

effect of errors in any one source less important [95]. This assertion assumes that the

Law of Large Numbers holds and that the expert opinion is i.i.d. (independent and

identically distributed). The i. i. d. assumption is justified because each FCM represents

the opinion of an independent expert or source of data, all focused on the same problem.

By combining the information from a large number of sources, the result is a reliable

information source which tends to be self-weighting. The self-weighting aspect comes
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from an assumption that most experts will agree on similar concepts, therefore, the

relationships they define will enhance each other as the FCMs are combined. As the

global FCM is constructed, if the self-weighting feature does not emphasize the

importance of the data collected in an appropriate fashion, a forced weighting scheme can

be implemented.

If the information from some sources (experts) carries more credence than other

information sources, a credibility weighting scheme can be included when the individual

matrices are combined to form the global matrix, as [96]

NE

E wiF (C-4)
i=1

where i is the index number associated with the number of experts or information sources

being considered, wi is the weighting factor associated with the individual, augmented

FCM Fi, and F is the resulting global matrix.

As an alternative to simply summing the individual FCMs to form a global FCM,

other methods of fuzzy knowledge combination can be considered. These fuzzy

knowledge combination methods can range from the very pessimistic, intersection

operator, to the very optimistic, union operator. A number of conditions have been

proposed, which aid in choosing an appropriate combination operator. Pelaez [97]

discusses a knowledge combination function

O:K -- K (C-5)

to be used when combining individual FCMs into a global FCM. His knowledge

combination function addresses the case where the same links are defined by different

experts using different fuzzy linguistic labels, and a mechanism is needed to determine

what the global linguistic label should be for the disputed link. In the development of his
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knowledge combination function, Pelaez considers a number of conditions which must be

satisfied in order for the knowledge combination function to be adequate. Those

conditions are discussed briefly below, followed by the definition of the knowledge

combination function .chosen by Pelaez for his work, which also will be adopted here.

C.2.1 KNOWLEDGE COMBINATION FUNCTION CONDITIONS

First, Pelaez denotes S as a set of query stimuli, K is a partially ordered set of knowledge

responses to those query stimuli. Each knowledge source (i.e., expert) will provide a

different mapping from the query to an answer. He calls the set of mappings from query

to response the set X, such that Xi: S -- K. Therefore, his knowledge combination

function yields a single piece of information, k, from all the knowledge responses of all

the knowledge sources.

0((XS(s.), X,(s,),...,X,(sj) = k ( C-6 )

The knowledge combination functions depend on the intersection and union

operators with respect to a knowledge response vector X, and its components X(s). Thus,

for notational simplicity, they are denoted as

1= min X,.(s) ( C-7 )
i

m = n Xi (s) ( C-8 )

The boundedness condition considers that at least the information represented by

the intersection of all the experts' opinions and at most the information represented by the

union of all the experts' opinions, is known. Therefore, the knowledge combination

function should fall within this range.
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l<0<m (C-9)

The symmetry condition requires that permutations of the original response vector

will yield the same knowledge combination result. Let P(n) be a permutation of the

original response vector X(s), and Xp (s) = ((Xp, (s) ... , Xp, (s)) be a mixture of the

knowledge response vector components, then the symmetry condition is defined as

O(X(s)) = O(XP (s)) for all p e P(n) (C-10)

The knowledge gap, the difference between what all experts agree upon

(information contained in the intersection set) and the total diverse expert opinion

(information contained in the union set) is considered in the following conditions. This

knowledge gap, is represented by the difference between the minimum and maximum

values calculated above, (i.e., m-I ). This measure can be associated with the measure of

dispersion in a statistical distribution, characterized, in a normal distribution by the

standard deviation.

The conservatism condition requires that as the gap in knowledge increases, the

decision method should tend toward the conservative. With the most conservative

knowledge combination method being the intersection or fuzzy minimum operator, this

condition is stated as

0,11 as m-/I (C-11)

If an assumption is made that all that is really known once information sources are

combined is the minimum and maximum values, and that the information gap contains

the extent of the fuzzy knowledge, then the nonparametricism condition is stated as

O(X(s)) = 0(l, m) (C-12)
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Finally, the leniency condition reflects the property that as the knowledge gap

shrinks, a more lenient approach to knowledge combination can be adopted, such that

O'm asm-/,10 (C-13)

Even with the restrictions imposed by conditions (C-9) through (C-13), there is

still a large set of knowledge combination techniques that could be adopted. Pelaez [97]

suggests selecting a knowledge combination function, 0, determining if it meets the

conditions described above, (i.e., belongs to the function space of 0, the admissible

knowledge combination operators which satisfy the above conditions) and seeing how it

behaves. His selection for 0, which will also be adopted for this work is shown below.

0(l, m) = min(m, 1 - m + 1) ( C-14)

This knowledge combination operator includes the information contained within

the knowledge gap with the second term in the minimum operation. That term represents

the negation of the knowledge gap. This choice for an operator also strikes a compromise

between a strict minimum or maximum-based operation; a good compromise between

conservatism and leniency.

C.3 DRAWING INFERENCES USING AN FCM

Drawing inferences based upon the information contained within a global FCM is a

simple matter of repeated matrix multiplication and thresholding operations. The result is

a "walk" through the states of the FCM until a limit state or cycle is reached; indicating

the final stable state(s) of the system resulting from the original input condition. Based

upon the limit cycle existence, the FCM has proven to be an ideal tool to answer "what
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if' questions. This research will extend that use, to show that FCMs can also be used to
adjust input membership functions as a result of the influence of the factors included in
the FCM. The inference technique used within this research will be a combination of the
inference techniques discussed below.

Once the FCM has been constructed, it can be used to draw inferences on what
concepts contained in the FCM will result if one of the concepts is activated. For
example, an FCM built to illustrate the interrelationships between various aspects of
South African politics by Kosko based upon a syndicated article by Walter Williams is
shown in Figure C-2 [1].

Fiur C 2 otCficnPltia3

Foreign +Mining +BIn.,vestment Emplymen

Wh ite 'J Black
Rais +(-R-eservationTra

Racaism Law s t

I p rhed Strength of N toConstituency

Figure C-2 South African Political FCM
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Based upon the interrelationships of factors illustrated in the FCM of Figure C-2,

what will be the result if the Foreign Investment Policy is followed? The FCM can be

used to answer this question through a series of vector/matrix multiplication and

thresholding steps until a limit cycle is reached, indicating the final state and the final

inference. First, the adjacency matrix associated with Figure C-2 is defined as

0 1 1 0 0 0 0 1 1

0 0 1 0 0 0 0 1 0

0 0 0 1 0 -1 0 1 1

0 0 0 0 0 1 1 0 -1

F= 0 -1 -1 0 0 1 1 0 0

0 0 0 1 0 0 -1 -1 0 (C-15)

0 0 0 0 1 0 0 -1 0

0 0 0 0 0 0 -1 0 0

0 0 0 0 -1 0 0 1 0

Next, the vector with the concept of interest "clamped" to a unity value and the remainder

of the elements set to zero is defined.

C1 = [ 100000000] (C-16)

Now, the concept vector and adjacency matrix are multiplied, then the thresholding

operation is performed; indicated below by the arrow symbol. The thresholding operation

here14 is defined as a transformation of any positive value to a value of one and any

14 The thresholding operation illustrated here is that suggested in [93]. However, the thresholding operation

performed in other literature consists of clamping values greater than zero to a value of +1, clamping values
less than zero to a value of -1, and clamping a value of zero to a value of 0. The result from the differences
in the clamping value will, in general, result in more concepts being activated in the final limit state.
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negative value to a value of zero and reclamping the original concept element to a value

of one, as

CIF=[0 1 100001 1]

*[1 1 100001 1]=C 2  
(C-17)

Then, the multiplication and thresholding operations are repeated until a limit state or

cycle is reached.

C2F= 0 12 1 -1 -1 -142]

-- [1 1110001 1]=C 3  
(C-18)

C3F= [0121 -10041 ]

- [1 1110001 1]=C 3  
(C-19)

In this example, the FCM reaches a limit state at the third iteration15 , giving the final

inference to the starting concept. It infers the concepts { C 1, C2, C3 , C4, C8, C9 I given the

policy "what-if' question of { C1 }.

Synchronous FCMs act as Temporal Associative Memories (TAM) [1] where an

n-dimensional autoassociative feedback network encodes an ordered sequence of n-

dimensional bit vectors as a stable limit cycle in the signal state space {0, 1 }'. This limit

cycle represents the states of the system and is commonly designated as its length, or the

number of interceding states before the system repeats itself [98]. For example, an FCM

that cycles through the cycle shown in Table C- I would be a 4-L limit cycle, whereas, the

FCM that settles at one point and remains there is a 1-L or fixed point limit cycle.

15 If the +1/0/-1 clamping had been used in this example the resulting limit state would have been {C1, C2,
C3, C5, C6, C7, C8, C9} after five iterations vs. the {C1, C2, C3, C4, C8, C9} result after three iterations of
the +1/0 clamping operation shown here.
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Table C-1 4-L Limit Cycle Example

Vector Iteration
0010 Input
000 1 First Output
1 000 Second Output
0 1 00 Third Output
0010 Fourth Output
000 1 Fifth Output

In practice, most FCMs settle into a very short limit cycle, or exhibit fixed point

behavior. However, depending on the allowed edge values, the maximum number of

limit cycles can theoretically be as large as 2n for a Bivalent State, 3fn for a Trivalent State,

and infinite for a Continuous State FCM.

Another means of drawing inferences from FCMs is based upon Kosko's fuzzy

causal algebra, derived originally from Axelrod's idea of indirect and total causal effects

in cognitive maps [93]. When a path from two concepts within the FCM is examined, the

indirect effect is the causality Ci imparts on Cj via each possible path between the two

concepts, whereas, the total effect is the aggregated causal effect across all possible paths

between the two concepts. Axelrod suggested using the signs of each leg of the path to

determine the indirect and total effects, however, this method resulted in indeterminate

conclusions on a regular basis. Therefore, Kosko extended the method by using

minimum and maximum operations. The calculation of the indirect effect is a matter of

calculating the minimum value along the path (if fuzzy linguistic variables are being used

to describe the links, an ordering of the terms must be determined prior to this operation).

Then the total effect is a maximum operation over all the indirect effects. The minimum

and maximum can be replaced with any t-norm and t-conorm operator to suit the

application. This series of minimum and maximum operations gives a satisfying intuitive

interpretation to the knowledge processing. The indirect effect amounts to specifying the

weakest causal link in the path and the total effect is specifying the strongest of the

weakest links -- a very intuitively satisfying approach to evaluating a system.
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Pelaez and Bowles [99] used FCMs to perform reliability and safety evaluations

on complex systems, developing an automated Failure Modes and Effects Analysis

(FMEA) methodology. Once the FCM for the system had been developed, they used a

max-min inference approach to identify critical portions of the system that should be

subjected to further examination or redesign. Their max-min inference approach

consisted of the following:

1. Take the weakest (minimum) linguistic term of the links in the path and

its weight as the path strength.

2. If the activated concepts in the path are linked by relationships

described by the same linguistic term, that term is set to the highest

(maximum) truth value of all the links included in the path.

3. If there is more than one path from the activating to the concluding concept, and it is

described by different linguistic terms, the conclusion is set to the result of the

defuzzification operation performed on the linguistic membership functions and their

confidence values using a Weighted Mean of Maxima defuzzification scheme.
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APPENDIX D

DEMPSTER-SHAFER THEORY

Theframe of discernment represents the domain of the problem. Usually represented as

E, this is the set of all possible hypotheses, mutually exclusive and exhaustive, in the

conclusion space [100]. The frame of discernment is chosen such that it is relevant to the

application. Shafer describes the process of choosing as [38]

It should not be thought that the possibilities that comprise E will be
determined and meaningful independently of our knowledge. Quite to the
contrary: 0 will acquire its meaning from what we know or think we know;
the distinctions that it embodies will be embedded within the matrix of our
language and its associated conceptual structures and will depend on those
structure for whatever accuracy and meaningfulness they possess.

For example, if a description of conclusions in an expert system are described in the

(object, attribute, value) triple form, then the frame of discernment would be all the

triples with the same object and attribute [101].

The basic probability assignment (bpa) or mass distribution is given to each

subset of 0, denoted by m(l) where T c 0, indicating the portion of the total belief

exactly committed to the hypothesis set T1, given a piece of evidence. The bpa must

satisfy the following conditions [102]:

Xm(T) = 1 (D-1)
TFcO
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m(0) = 0 (D-2)

0_<m'() 1, for all T _ ® (D-3)

m(F) represents the direct support of evidence on the subset T. One of the most

appealing aspects of the D-S theory is that it does not require that the remaining belief be

associated with the negation or complement of T, it allows an assignment of belief to the

entire frame of discernment, (i.e., m(e)) thus allowing for the distinction between the

known and the unknown. The value of m(O) represents the portion of the total belief that

is uncommitted to any of the hypotheses after all the evidence has been gathered.

The belieffunction and plausibility function represent a lower and upper bound

on the probability function and are calculated as [103]:

Bel(B) = I m(A) (D-4 )
AcB

Pl(B)= m(A) =1- Bel(B) (D-5 )
AnBoO

The belief function of a hypothesis, or its lower probability, is the sum of all the basic

probability assignment values for all the proper subsets of that hypothesis. The

distinction between the basic probability assignment and the belief function is that the

bpa represents the amount of belief committed exactly to the hypothesis, while the belief

function represents the total amount of belief committed to the hypothesis [104]. On the

other hand, the plausibility function of a hypothesis, or its upper probability, represents

the maximum amount of belief that can be committed to the hypothesis based upon the

evidence. Alternatively, the plausibility can be viewed as the amount of belief that is not

committed to the negation of the hypothesis.

The belief interval can be given for each hypothesis as the interval indicating the

minimum (represented by the belief function) and the maximum (represented by the

plausibility function) probability bounds on the hypothesis. The extent of the belief
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interval is a measure of the belief that is neither committed to the hypothesis nor it

negation. Therefore, the belief interval can be interpreted as a measure of the ignorance

or uncertainty in the hypothesis: the closer the value is to zero the more certain is the

hypothesis, while the closer to unity the more uncertain. In most cases the belief interval

will be somewhere in the range [0,1].

Finally, the degree of certainty is an index of the certainty associated with a

decision, and is defined as [105]

DOC(X) = m(X) - Bel(X) (D-6)

Using the definition of the plausibility function given in (D-5), the DOC can also be

calculated directly from the basic probability assignment and plausibility function values,

as

DOC(X) = m(X) + PI(X) - I (D-7)

The range of values for DOC is [-1, 1], however, there are some values of the index

indicating special circumstances about the decision being made. For example, when

DOC(X) = 1 all the evidence points exclusively to X because m(X) = 1. DOC(X) = 0,

indicates a case of total ignorance, since m(X) = Bel(X). Finally, when DOC(X) = -1,

the Bel( X) = 1 indicating that no evidence supports the piece of information represented

by X.

The Dempster Rule of Combination provides a means of combining evidence

once the bpa associated with each piece of evidence is derived. Given two pieces of

evidence that provide information on the hypothesis T denoted ml('F) and m2('), the

combined bpa is denoted m12(P) and is given by:
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Xm(A)mE(B)
mr12(T) = A(B=1 (D-8)

I-K

Where K is a normalization factor and is given by:

K= jmj(A)m2(B) (D-9)
AnB=O

The intersection tableau method of combination is suggested in [101], giving a

straightforward and illustrative method of performing the combination. For example,

consider the task of predicting a medical diagnosis based upon evidence gathered during

an examination of the patient. One observation supports the diagnosis of hepatitis or

cirrhosis of the liver to degree 0.6; mi{Hep, Cirr} = 0.6. The other observation supports a

diagnosis of cirrhosis, gallstones, or pancreatic cancer to a degree 0.7; m2{Cirr, Gall,

Pan } = 0.7. The combination of these two pieces of evidence are shown in the

intersection tableau in Table D-1.

Table D-1 Intersection Tableau for m, with m2

m2[Cirr, Gall, Pan] = 0.7 m2{O} = 0.3

mf[Hep, Cirr} = 0.6 m12{Cirr} = 0.42 m 12 {Hep, CirrI = 0.18

ml[0] = 0.4 m12 {Cirr, Gall, Pan} = 0.28 m12{} = 0.12

m12{ } = 0 for all other subsets of . In this example K is zero because there are no null

intersections. If there is another observation that confirms the diagnosis of hepatitis to

the degree 0.8, that evidence is combined with the current combination to get the final

hypothesis as shown in the tableau of Table D-2.
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Table D-2 Intersection Tableau for in1 2 with Mn3

MffHep] = 0.8 M3[01 0.2

M12[Cirr] =0.42 M12 3 {101 = 0.336 In 12 3 {1Cirr} 0.084

m,2[Hep, Cirri = 0.18 M12 3 {IHep}I = 0. 144 M1231Hep, Cirr} = 0.036

m&2 Cirr, Gall, Pan] = 0.28 M1 23 {0} = 0.224 M12 {Cirr, Gall, Pan} I- 0.056

M1210] = 0.12 M123 {Hep} = 0.096 M123t[0)1 = 0.024

In this case, there are null entries and K is given the value of the sum of these. Therefore,

the final basic probability assignments due to these combinations are

K = 0.336 + 0.224 = 0.56

M12 3 {Hep} (0. 144 + 0.096) /(I - 0.56) = 0.545

MI 2 3 {Cirr} (0.084) / (1- 0.56) = 0. 191

m123 {H1ep, Cirr} = 0.36 / (1- 0.56) = 0.082

M12 3 {tCirr, Gall, Pan}I = 0.0561/(1- 0.56) = 0. 127

M12310 I = 0.024 /(1- 0.56) = 0.055
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APPENDIX E

SOURCE CODE

This appendix contains the C-language source code implementing the Intelligent

Hierarchical Decision Architecture's Methodology. It is broken into three stages,

described below.

Stage ] ( Clustering Methodology): The program reads the raw test data (for one logical

system division and all the MOFPs) from a file (testdata.dat), forms the MOFP-level

COMMFFYs using four compositional methods, then selects the optimal COMMFFY

based upon the calculation of the COA/Mean Similarity Measure. The program then

passes the optimal MOFP-level COMMFFYs (one for each MOFP) to Stage 2.

Stage 2 (Fuzzy Associative Memory): The optimal MOFP-level COMMFFYs from Stage

1 are used as input to stimulate the Fuzzy Associative Memory of Stage 2. The FAM

serves to transform the MOFP-level COMMFFYs to a single MOTA-level COMMFFY.

The code accomplishes this transformation by first forming a Degree of Membership

vector representing each COMMFFY, then the FAM rules are used to make the

transformation from each MOFP to the MOTA-level. Finally, the Reduction Theorem is

used to aggregate across the MOTA-level vectors to form a single Degree of Membership

vector at the MOTA-level. This Degree of Membership vector is then transformed into

the MOTA-level COMMFFY which is passed to Stage 3.
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Stage 3 (Fuzzy Cognitive Map): The MOTA-level COMMFFY is adjusted for factors

which could not be controlled or included in the testing, using a Fuzzy Cognitive Map.

The user is prompted for the Best-Case and Worst-Case adjustments to be made to the

testing-based performance. Once these values (in the form of linguistic tags) have been

supplied, the program adjusts the MOTA-level COMMFFY membership function values

accordingly. The output from this stage is the MOTA-level, adjusted COMMFFY for a

single logical division of the system.

The output from the program is dumped into two files. The entire set of results, including

all interim results, are put into a file for review (decision.res). The Best-Case and Worst-

Case MOTA-level COMMFFY values (for the logical division represented by the original

data values) are put into a separate file to facilitate the processing of the aggregation in

the final step of the Intelligent Hierarchical Decision Architecture (fcmreslt.res). The

Aggregation Methodology, which is the final stage of the Intelligent Hierarchical

Decision Architecture methodology, is accomplished off-line using the Dempster-Shafer

Theory of Evidential Reasoning and therefore, is not included here.
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E.1 MAIN PROGRAM CODE

Below is the main program, followed by the source code for all the functions included

within the main. Comments are shown, when necessary to explain the code's rationale,

in italics and right justified on the line prior to the code. The break between the three

stages described above are highlighted with a comment that is bolded, italicized and

centered.

Include Files
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

Define & Constant Declarations
#define MAX(A,B) (((A) > (B)) ? (A) (B))
#define MIN(A,B) (((A) < (B)) ? (A) (B))
#define SQR(X) ((X)*(X))

#define MOFPS 6
#define DATAPTS 10
#define DOM 9
#define IndCOMMFFYSize 21
#define COMMFFY 101
#define MFPARAMS 5
#define METHODS 4
#define MAXMAX 0
#define MAXALL 1
#define MINMAX 2
#define MINALL 3

Function Precasts
FILE *OpenDataFile( char *filename, char *mode);
void ReadDataFile( FILE *, float[][DATAPTS]);
void Cal _StandardStatistics( int, float[], float[]);
void GenerateMOFP_BMF( int MOFPNum, float BMFMOFP[DOM][MFPARAMS]);
void ReadMOFPMFFile( FILE *, float[][MFPARAMS] );
void GenDOMMaxMax( float[], float[][MFPARAMS], float[]);
float Calc IncMF( float, float, float );
float CalcDecMF( float, float, float );
void GenDOMMaxAll( float[], float[][MFPARAMS], float[]);
void GenDOM_MinMax( float[], float[][MFPARAMS], float[]);
void GenDOMMinAll( float[], float[][MFPARAMS], float[]);
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void FillCOMMFFYVector( float[], float COMMFFYVec[]);
void Gen Tri COMMFFY( int, int, int, float, float[] );
void GenOpenLeftCOMMFFY( int, int, int, float, float[]);
void GenOpenRightCOMMFFY( int, int, int, float, float[]);
float DeFuzzByCOA( int, float[] );
float Calc _COA_SimilarityMeasure( float, float);
int DetermineOptimalMethod( float[] );
void MOFP to MOTATransformation( float[][DOM], float[][DOM]);
void Calc _FAMAggregation( float[], float[][DOM], float[]);
void GetFCMAdjustment( float[] );
void AdjustMOTACOMMFFY( float, float[], float[]);

void main( void)
{

Input and output file pointers
FILE *inputpt, *outputpt, *fcmresults;

Raw Data Matrix
float Data[MOFPS][DATAPTS];

3-D Matrix holding all MOFP BMFs
float MOFPBasicMF[MOFPS][DOM][M FPARAMS];

Degree of Membership Matrix to be used during optimization
float METHMOFPDOM[M ETHODS][MOFPS][DOM];

Degree of Membership Matrix to hold optimal results
float MOFPDOM[MOFPS][DOM];

COMMFFY Value Matrix to be used during optimization
float METHMOFPCOMMFFY[METHODS][MOFPS][COMM FFY];

COMMFFY Value Matrix to hold optimal result
float MOFPCOMMFFY[MOFPS][COMMFFY];

Mean & Standard Deviation

float Stats[MOFPS][2];

Results of Center of Area Defuzzification for all methods
float COADeFuzz[MOFPS][METHODS];

Results of Center of Area Similarity Measures for all methods
float COAMetric[MOFPS][METHODS];
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Index of Optimal Method
int Optlndex[MOFPS];

MOTA-level Degree of Membership Matrix prior to reduction theorem aggregation
float MOTADOM[MOFPS][DOM];

Weights for the MOFP aggregation
float MOFPWEIGHTS[] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};

Aggregated MOTA DOM using MIN method
float FAMMOTADOM[DOM];

MOTA COMMFFY generated from MIN aggregation
float FAMMOTACOMMFFY[COMMFFY];

Numerical values associated with best and worst case FCM hedges
float FCMHedge[2];

Best and worst case adjusted MOTA-level COMMFFY
float FCMMOTACOMMFFY[2][COMM FFY];

int i,j,k;

Open and read test data file into data matrix

inputpt = OpenDataFile("c:\\arc\\qed\\data\\testdata.dat", "r");
outputpt = OpenDataFile("c:\\arc\\qed\\results\\decision.res", "w+");
fcm results = Open-DataFile("c:\\arc\\qed\\results\\fcmreslt.res", "w+");
ReadDataFile( inputpt, Data);
for( i=0; i<MOFPS; i++)

for( j=0; j<DATAPTS; j++)
fprintf( outputpt, "Data[%d][%d] = %5.2f \n", ij, Data[i][j]);

Calculate mean and standard deviation of test data for comparison to COMMFFY
metrics to determine best compositional method.

for( i=0; i<MOFPS; i++)
CalcStandardStatistics( DATAPTS, Data[i], Stats[i]);

for( i=0; i<MOFPS; i++)
for( j=0; j<2; j++ )

fprintf( outputpt, "Stats[%d][%d] = %5.2f \n", ij, Stats[i]U] );
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Make assignments of basic membership function values for each MOFP

for( i=0; ikMOFPS; i++)
GenerateMOFFBMF( k-i, MOFPBasicMF[i]);

Generate Degree of Membership Vectors for each MOFP based upon raw data using all
the compositional methods.

for( i=0; i<MOFPS; i++)

Ge{ O a a(aaiMF~scFiMTMFDMMXA]i)
Gen_-DOMMMaxa( Data[i], MOFPBasicMF[i], METHMOFPDOM[MAXA][i]);
Gen_-DOMMaAII( Data[i], MOFPBasicMF[i], METHMOFPDOM[MXALL][i]);
Gen_-DOMMnaxl( Data[i], MOFPBasicMF[i], METHMOFPDOM[MINA][i]);

for( i=0; i<METHODS; i++)
for( j=0; j<MOFPS; j++ )

for( k=0; k<DOM; k++)
fprintf( outputpt, "METHMOFPDOM[%dJ[%d][%d] = %5.2f \n",

i,j,k, METHMOFPDOM[illj][k]);

Generate COMMEFY Values from DOM Values using all compositional methods

for( i=0; i<METHODS; i++)
for( j=0; j<MOFPS; j++)

FillCOMMEFYVector( METHMOFPDOM[i]J], METHMOFPCOMMFFY[i][j]);

for(i=0; i<METHODS; i+i+)
for( j=0; j<MOFPS; j++ )

for( k=0; k<COMMFFY; K++)
fprintf( outputpt, "METHMOFPCOMMFFY[%d][%d][%d] = %5.2f \n",

i,j,k, METHMOFPCOMM FFY[i]IU][k]);

Calculate COMMEFY centroid value using the Center of Area Defuzzication Scheme

for( i=0; i<MOFPS; i++)
for( j=0; j<METHODS; j++)

COADeFuzz[i]U]j = DeFuzz_-By-COA(4i1-, METHMOFPCOMMFFYOj][i]);
fprintf( outputpt, "COADeFuzz[%d][%d] = %5.2f \n",

ij, COADeFuzz[i][j])
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Calculate the COAlMean Similarity Measure for each MOFP/Method Combination

for( i=O; ikMOFPS; i+i+)
for( j=O; j<METHODS; j++)

COAMetri[i]UI = Cal _OASimilarity-Measure(COADeFuzz[i]j],
Stats[i][O] );

fprintf ( outputpt, "COAMetrio[%d][%d] = %5.2f \n",
ij, COAMetric[i][j])

Determine optimal compositional method from COAlMean Similarity Measure

for( i=0; ikMOFPS; i++)

Optlndex[i] = Determine-OptimalMethod( COAMetric[i])
fprintf ( outputpt, "MOFP[%d] Optimal Method is %d \n",

i, Optlndex[i])

Fill Degree of Membership Matrix with optimal method results

for( i=0; i<MOEPS; i++)

k = Optlndex[i];
for( j=O; j<DOM; j++)

MOFPDOM[i]fl] = METHMOFPDOM[k][i]fjI;
fprintf ( outputpt, "MOFPDOM[%d][%d] = %5.2f \n",

ij, MOFPDOM[i][j])

Generate MOFP-level COMMEFY from the optimal generation method

for( i=0; i<MOFPS; i++)
FillCOMMEFYVector( MOFPDOM[i], MOFPCOMMFFY[i]);

for( i=0; i<MOFPS; i++) I/Output results to file
for( j=0; j<COMMFFY; j++)
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fprintf( outputpt, "MOFPCOMMFFY[%d][%d] = %5.2f \n",

ij, MOFPCOMMFFY[i]U]);

End Clustering Methodology, Begin Fuzzy Associative Memory

Perform MOEP to MOTA transformation using Fuzzy Associative Memory

MOEP-toMOTATransformation( MOFPDOM, MOTADOM);

for( i=O; i<MOEPS; i++)
for( j=O; j<DOM; j++)

fprintf( outputpt, 'MOTADOM[%d][%d] = %5.2f \n", i,], MOTADOM[i][j])

Aggregate MOTA-transformed matrix value into a vector using Reduction Theorem

Cab _GenMean-Aggregation( MOFPWEIGHTS, MOTADOM, FAMMOTADOM);

for(i=0; <DOM; i++)
fprintf( outputpt, "FAMMOTADOM[%d] = %5.2f \n", i, FAMMOTADOM[i]);

Generate MOTA COMMFFY Vector from the MOTA DOM Vector

FillCOMMFFY-Vector( FAMMOTADOM, FAMMOTACOMMEFY);

for(i=0; i<COMMFFY; i++)
fprintf( outputpt, "FAMMOTACOMMFFY[%d] = %5.2f \n",

i, FAMMOTACOMMFFY[i]);

End Fuzzy Associative Memory, Begin Fuzzy Cognitive Map

Prompt user for hedges representing FCM-produced adjustments, then apply those
adjustments to the FAMMOTACOMMFFY generated in the previous phases

GetFCM-Adjustmnent( FCMHedge);

for( i=0; i<2; i++)
Adjust-MOTACOMMFFY( FCMHedge[i], FAMMOTACOMMFFY,

FCMMOTACOMMFFY[i]);
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for( i=0; i<2; i++)
for( j=O; j<COMMFFY; j +)

fprintf( outputpt, "FCMMOTACOMMFFY[%d][%d] = %5.2f \n",
i, j, FCMMQTACOMMFFY[i]U]);

fprintf( fcmresults, "%5.2f \n", FCMMOTACQMMFFY[i][J]);

Close input and output files.

fclose(inputpt); fclose(outputpt); fclose(fcmresults);
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E.2 FUNCTION CODE

Shown below are the functions called within the main program which implements the

Intelligent Hierachical Decision Architecture Methodology. The functions are shown

below in the order in which they appear in the Intelligent Hierarchical Decision

Architecture main program. Each function begins with a general explanation of its

functionality, and the parameters passed in and out of the function. Then, each function

is commented as necessary to further explain any of the code's intricacies. All comments

are shown in italics to enhance their separability them from the source code.

FILE *OpenDataFile( char *filename, char *mode)
{
Opens afile in a designed mode, and returns the filepointer to that file if successfully
opened.

FILE *filepointer;

if ((filepointer = fopen(filename, mode)) I= NULL)
printf("\nSuccessful opening %s in mode %s.\n", filename, mode);

else
{

printf("\nUnable to open %s in mode %s.\n", filename, mode);
exit(l);

}
return filepointer;

void ReadDataFile( FILE *filepointer, float DataMatrix[MOFPS][DATAPTS])
{
Reads a data file pointed to by *filepointer, and puts its contents in a matrix named
DataMatrix.

float value;
int count=O, row, col;

while( fscanf(filepointer, "%f", &value) == 1)
{

row = count / DATAPTS;
col = count % DATAPTS;
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DataMatrix[row][col] = value;
count++;

}

void Caic_StandardStatistics( int n, float observations[], float stats[])
{
Calculates the mean and standard deviation of a vector of observations passed to it.

Pass in the number of observations in the vector and the vector of observations, and
passes out a vector containing the mean in the first (0) position and the standard

deviation in the
second (1) position.

int i;
float accum;

for( i=0, accum=O; i<n; i++)
accum += observations[i];

stats[O] = accum/n;
for( i=0, accum=0; i<n; i++)

accum += SQR( observations[i] - stats[0]);
stats[l] = sqrt(accum/(n-1));

void GenerateMOFPBMF( int MOFPNum, float BMFMOFP[DOM][MFPARAMS])
{
Opens afile containing the basic membership function delimiters for a given MOFP and
loads them into a matrix.

Pass in the MOFP number of interest and the name of the matrix to be filled the function
fills the matrix with the information from the MOFP file.

int row, col;
FILE *inputMOFP;

if (MOFPNum == 1)
{

inputMOFP = Open-DataFile("c:\\arc\\qed\\data\\mopl mf.dat", "r");
ReadMOFPMFFile( inputMOFP, BMFMOFP);
fclose(inputMOFP);

}

else if (MOFPNum == 2)
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inputMOFP = Open-Data-ile("c:\\arc\\qed\\data\\mop2mf .dat", "r");
Read_-MOFPMF - ile( inputMOEP, BMFMOFP);
fclose(inputMOFP);

else if (MOFPNum == 3)

inputMOEP = Open-Data-File("c:\\arc\\qed\\data\\mop3mf .dat", "ir");
Read_-MOFPMF -File( inputMOEP, BMFMOFP);
fclose(inputMOFP);

else if (MOFPNumn == 4)

inputMOEP = Open-Dataile("c:\\arc\\qed\\data\\mop4mf .dat", "r");
Read_-MOFPMF -File( inputMOEP, BMFMOFP);
fclose(inputMOFP);

else if (MOFPNumn == 5)

inputMOEP = Open-Data-File("c:\\arc\\qed\\data\\mopsmf .dat", "ir");
Read_-MOFPMF - ile( inputMOEP, BMFMOFP);
fclose(i nputMOFP);

else if (MOFPNum = 6)

inputMOFP = Open-Data -File("c:\\arc\\qed\\data\\mop6mf .dat", 'r");
Read_-MOFPMF -File( inputMOFP, BMFMOFP);
fclose(inputMOFP);

vidRaMOM FieFIE*ieonefotDtlati[il]ilPRll)
I

Reads in the limits of the Basic Membership Function values
float value;
int count=O, row, col;

while( fscanf(filepointer, "W", &value) =1)

ro{ on FAAS
row = count % MEPARAMS;

DataMatrix[row][col] =value;

count++;
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void GenDOMMaxMax( float DataVec[1 0], float MF[DOM][MFPARAMS], float
DOMVec[1OJ)

Function calculates the degree of membership using the Max-Max Compositional
Method. The Max-Max method activates the basic membe rship function for which each
data point is a maximum, then takes the maximum degree within each basic membership
function.

Pass in the vector holding the data and the matrix holding the parameters of the basic
membership function and this function passes out a vector containing the degrees of
membership for each of the basic membership functions.

int i;
float DOMTemp;

Initialize all BMFs to zero DOM
for(i=0; i<DOM; i++)

DOMVec[i]=0;

for(i=0; i<DATAPTS; i++)

if ((DataVec[i] <= MF[0][2]) && (DataVeo[i] >= MF[0][0]))
DOMVec[O] = 1.0;

else if ((MF[0][2] < DataVec[i]) && (DataVec[i] < MF[0J[3]))

DOMTemp =CalcDecMF(MF[0][2], MF[0][4], DataVec[i]);
DOMVec[O] =MAX(DOMVec[0], DOMTemp);

else if (DataVec[i] == MF[0][3])

{ O~cO A(05 O~cO)
DOM Vec[1 ] = MAX( 0.5, DOMVec[0])

else if ((MF[1][1] < DataVec[i]) && (DataVec[i] < MF[1][2]))

DOMTemp =Calci nc..MF(MF[1 ][0],M F[1 ][2], DataVec[i]);
DOMVec[1] MAX(DOMVec[1 ], DOMTemp);

else if (DataVeci == MF[1][2])
DOMVec[1 ] = 1.0;

else if ((MF[1][2] < DataVec[i]) && (DataVeci] < MF[1][3]))

DOMTemp =CalcDecMF(M F[1 ][2], MF[1 ][4], DataVec[i]);
DOMVec[1] MAX(DOMVec[1 ], DOMTemp);

else if (DataVec[i] == M F[1 ][3])
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{ O~c1 A(O5 O~c1)
DOMVec[1] = MAX( 0.5, DOMVec[1]);

else if ((MF[2][1] < DataVec[i]) && (DataVec[i] < MF[2][2]))

DOMTemp =Cab lnc-MF(MF[2][0], MF[2][2], DataVec[i]);
DOMVec[2] =MAX(DOMVec[2], DOMTemp);

else if (DataVec[i] == MF[2][2])
DOMVec[2] = 1.0;

else if ((MF[2][2] < DataVec[iJ) && (DataVec[i] < MF[2][3]))

DOMTemp =Calc-Dec-MF(MF[2][2], MF[2][4], DataVec[i]);
DOMVec[2] =MAX(DOMVec[2], DOMTemp);

else if (DataVec[i] == MF[2][3])

DOIc2 A(O5 O~c2)
DOMVec[2] = MAX( 0.5, DOMVec[2]);

else if ((MF[3][1] < DataVeo[i]) && (DataVec[iJ < MF[3][2]))

DOMTemp =Calci nc-MF(MF[3][0], MF[3][2], DataVec[i]);
DOMVec[3] =MAX(DOMVec[3], DOMTemp);

else if (DataVec[i] == MF[3][2])
DOMVecI3] = 1.0;

else if ((MF[3][2] < DataVecli]) && (DataVec[i] < MF[3][3]))

DOMTemp =Calc Dec MF(MF[3][2], MF[3][4], DataVec[i]);
DOMVec[3] =MAX(DOMVec[3], DOMTemp);

else if (DataVec[i] == MF[3][3])

{ O~c3 A(O5 O~c3)
DOMVec[3] = MAX( 0.5, DOMVec[3]);

else if ((MF[4][1] < DataVec[i]) && (DataVec[i] < MF[4][2]))

DOMTemp =Calci nc-MF(M F[4][0], MF[4][2], DataVeo[i]);
DOMVec[4] =MAX(DOMVec[4], DOMTemp);

else if (DataVecti] == MF[4][2])
DOM Vec[4] = 1.0;
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else if ((MF[4][2] < DataVec[i]) && (DataVec[i] < MF[4][3]))

DOMTemp =CalcDecMF(MF[4][2], MF[4][4], DataVeotij);
DOMVec[4] =MAX(DOMVec[4], DOMTemp);

else if (DataVeo[i] == MF[4][3])

DO{c4 A(O5 O~c4)
DOMVec[4] = MAX( 0.5, DQMVec[4]);

else if ((MF[5][l] < DataVec[i]) && (DataVec[i] < MF[5][2]))

DOMTemp =CaicIncMF(MF[5][0], MF(5](2], DataVec[i]);
DOMVec[5] =MAX(DOMVec[5], DOMTemp);

else if (DataVec[i] == MF[5][2])
DOMVec[5] = 1.0;

else if ((MF[5][2] < DataVec[i]) && (DataVec[i] < MF[5][3]))

DOMTemp =Cab _DecMF(MF[5][2], MF[5][4], DataVec[i]);
DOMVec[5] =MAX(DOMVec[5], DOMTemp);

else if (DataVec[i] == MF[5][3])

DO{c5 A(05 O~c5)
DQMVec[6] = MAX( 0.5, DOMVec[5])

else if ((MF[6][1 j < DataVec[i]) && (DataVeci] < MF[6][2]))

DOMTemp =CalcIncMF(MF[6][0], MFII6][2], DataVec[iJ);
DOMVec[61 MAX(DOMVec[61, DOMTemp);

else if (DataVeci] == MF[6J[2])
DOMVec[6) = 1.0;

else if ((MF[61[2] < DataVec[iI) && (DataVec[i] < MF[6][31))

DOMTemp =CalcDecMF(MF[6][2], MF[6][4J, DataVec[i]);
DOMVec[6] =MAX(DOMVec[6], DOMTemp);

else if (DataVeci == MF[6](3])

DOMVec[6] = MAX( 0.5, DQMVec[6]);
DOMVec[7] = MAX( 0.5, DOMVec[7]);

else if ((MF[7][1) < DataVec[i)) && (DataVecli] < MF[7][2]))
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DOMTemp = Calcjlnc-MF(M F[7][0], MF[7][2], DataVeo[i]);
DOMVec[7] = MAX(DOMVec[7], DOMTemp);

else if (DataVec[i] == MF[7][2])
DOMVec[7] = 1.0;

else if ((MF[7][2] < DataVec[i]) && (DataVec[i] < MF[7][3]))

DOMTemnp =Calc Dec MF(MF[7][2], MF[7][4], DataVeo[i]);
DOMVec[7] =MAX(DOMVec[7], DOMTemp);

else if (DataVecli] == MF[7][3])

{O~c7 A(O5 O~c7)
DOMVec[7] = MAX( 0.5, DOMVec[7]);

else if ((MF[8][1] < DataVeo[i]) && (DataVec[i] < MF[8][2]))

DOMTemnp =Calci nc-MF(M F[8][0], M F[8][2], DataVec[i]);
DOMVec[8J MAX(DOMVec[8], DOMTemp);

else if ((DataVec[i] >= MF[8][2]) && (DataVec[i] <= MF[8][4]))
DOMVec[8] = 1.0;

float CaicDecMF(float a, float b, float x)

Calculates the membership function value for a triangular shaped membership fuinction's
negative slope side.

return (1 .0 - (x-a)I(b-a));

float CaicIncMF(float a, float b, float x)

Calculates the membership function value for a triangular shaped membership fu~nction's
positive slope side

return ((x-a)I(b-a));
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void Gen_-DOMMax-All( float DataVec[1 0], float MVF[DOMV][MVFPARAMVS], float
DOMVec[1 0])

Function calculates the degree of membership using the Max-All Compositional Method.
The Max-All method activates all the basic membe rship functions for each data point,
then takes the maximum degree within each basic membership function.

Pass in the vector holding the data, and the matrix holding the basic membership
function limits and the function passes out a vector containing the degrees of membership
for each of the basic membership functions.

int i;
float DOMTempl, DOMTemp2;

Initialize all BMF's to zero DOM
for(i=O; i<DOM; i++)

DOMVec[i]=0;

for(i=O; i<DATAPTS; i++)

if ((DataVeo[i] <= MF[0][2]) && (DataVec[i] >= MF[O][0]))
DOMVec[0] = 1.0;

else if ((MF[0][2] < DataVec[i]) && (DataVeo[i] < MF[0][4]))

DOMTempl = Cab _DecM~F(MF[0][2], MF[0][4], DataVec[i]);
DOMTemp2 = Calci ncMl~F(M F[1 ][0], MF[1 ][2], DataVec[i]);
DOMVec[0] = MAX(DOMVec[O], DOMTempl);
DOM Vec[1 ] = MAX(DOMVeo[1 ], DOMTemp2);

else if (DataVec[i] == MF[1][2])
DOMVec[1 ] = 1.0;

else if ((MF[1][2] < DataVeo[i]) && (DataVec[i] < MF[1][4]))

DOMTempl = Cab _DecMF(MF[1][2], MF[1][4], DataVec[i]);
DOMTemp2 = Cab Ilnc MF(MF[2][0], MF[2][2], DataVec[i]);
DOMVec[1J = MAX(DOMVec[1], DOMTempl);
DOMVec[2] = MAX(DOMVec[2], DOMTemp2);

else if (DataVec[i] == MF[2][2])
DOMVec[21 = 1.0;

else if ((MF[2][2] < DataVec[iI) && (DataVec[i] < MF[2][4]))

DOMTempl = CalcDecM~F(M~F[2][2], MF[2][4J, DataVec[i]);
DOMTemp2 = CalcjlncMl~F(MF[3][0], MF[3[21, DataVec[i]);
DOMVec[2] = MAX(DOMVec[2], DOMTempl);
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DOMVec[3] = MAX(DOMVec[3], DOMTemp2);

else if (DataVec[i] == MF[3][2])
DOMVec[3] = 1.0;

else if ((MF[3][2] < DataVeo[i]) && (DataVec[i] < MF[3][4]))

{ O~ml=Cl-e-FM[]2,M[]4,Dt~ci)
DOMTempl = CalcDecMF(MF[3][2], MF[][], DataVec[i]);
DOM~emp2] = CAlcjcMF(M[4[], MF[][],Daalc)])
DOMVec[3] = MAX(DOMVec[3], DOMTempl);

else if (DataVecli] == MF[4][2])
DOMVec[4] = 1.0;

else if ((MF[4][2] < DataVec[i]) && (DataVec[i] < MF[4][4]))

DOMTempl = Cab _DecMF(MF[4][2], MF[4][4], DataVec~l]);
DOMTemp2 = Calci no MF(MF[5][0], M F[5][2J, DataVec[i]);
DOMVec[4] = MAX(DOMVec[4], DOMTemp1);
DOMVec[5] = MAX(DOMVec[5], DOMTemp2);

else if (DataVec[i] == MF[5][2])
DOMVec[5] = 1.0;

else if ((MF[5][2] < DataVec[i]) && (DataVec[i] < MF[5][4]))

DOMTempl =CalcDecMF(MF[5][2], MF[5][4J, DataVec[i]);
DOMTemp2 = Calc-Inc MF(MF[6][0], MF[6][2], DataVec[i]);
DOMVec[5] = MAX(DOMVec[5], DOMTempl);
DOMVec[6] = MAX(DOMVec[6], DOMTemp2);

else if (DataVec[i] == MF[6][2])
DOMVec[6] =1.0;

else if ((MF[6][2] < DataVec[i]) && (DataVec[i] < MF[6][4]))

DOIml=Cl e-FM[]2,M[]4,Dt~ci)
DOMTempl = Cab _DecMF(MF[6][], MF[][], DataVec[i]);
DOM~emp2] = CAlcjncMF(M[7], MF[][m ,Daalc)])
DOMVec[6] = MAX(DOMVec[6], DOMTempl);

else if (DataVec[i] == MF[7][2])
DOMVec[7] = 1.0;

else if ((MF[7][2] < DataVec[i]) && (DataVec[i] < MF[7][4]))

DOMTempl = Cab _DecMF(MF[7][2], MF[7][4], DataVec[i]);
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DOMTemp2 =CalcjlncMlF(MF[8][0], MF[8][2], DataVec[i]);
DOMVec[7] =MAX(DOMVec[7], DOMTempl);
DOMVeo[8] =MAX(DOMVec[8], DOMTemp2);

else if ((DataVeci] >= MF[8][2]) && (DataVec[i] <=MF[8][4]))
DOMVec[8] = 1.0;

void GenDOMMinMax( float DataVec[1 0], float MVF[DOM][MVFPARAMVS], float
DOMVec[10])

Function calculates the degree of membership for percentage based basic membership
functions using the Min-Max Compositional Method. The Min-Max method activates the
basic membe rship function for which each data point is a maximum, then takes the
minimum degree within each basic membership function.

Pass in the vector holding the data and the matrix holding the basic membe rship function
limits and the function passes out a vector containing the degrees of membership for each
of the basic membership functions.

int i;
float DOMTemp;

Initialize all BMF's to zero DOM
for(i=O; iKDOM; i++)

DOMVec[i]=0;

for(i=0; i<DATAPTS; i++)

if ((DataVec[i] <= MF[0J[2]) && (DataVec[i] >= MF[0][0]))
DOMVec[0] = 1.0;

else if ((MF[0][2] < DataVeo[i]) && (DataVec[i] < MF[0][3]))

DOMTemp =Calc -DecMlF(MF[][2, MF[0][4], DataVeo[i]);
if (DOMVec[0] == 0.0)

DOMVec[0] = DOMTemp;
else

DOMVec[O] = Ml N(DOMVec[0], DOMTemp);

else if (DataVec[i] == MF[0][3])

if (DOMVec[0] == 0.0)
DOMVec[0] = 0.5;

else
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DOMVec[0] =MIN( 0.5, DOMVec[0]);
if (DOMVec[1 ] == 0.0)

DOMVec[1 ] =0.5;

else
DOMVeo[1] =MIN( 0.5, DOMVec[1]);

else if ((MF[l][1] < DataVeo[i]) && (DataVec[i] < MF[1][2]))

DOMTemp = Calc-lnc-MF(MF[1 ][0], MF[1 J[2], DataVec[i]);
if (DOMVec[1] == 0.0)

DOMVec[1] DOMTemp;
else

DOMVec[1] =MIN(DOMVec[1], DOMTemp);

else if (DataVec[i] == MF[1][2])
DOMVec[1] = 1.0;

else if ((MF[1I[2] < DataVec[i]) && (DataVec[i] < MF[1][3]))

DOMTemp = CalcoDec-MF(M F[1 ][2], MF[1 ][4], DataVec[i]);
if (DOMVec[1 ] == 0.0)

DOMVec[1] = DOMTemp;
else

DOMVec[1] = MIN(DOMVec[l], DOMTemp);

else if (DataVec[i] == M F[1 ][3])

if (DOMVec[1] 0.0)
DOMVec[1] 0.5;

else
DOMVec[1] =MIN( 0.5, DOMVec[1]);

if (DOMVec[2] == 0.0)
DOMVec[2] =0.5;

else
DOMVec[2] =MIN( 0.5, DOMVec[2]);

else if ((MF[2][1] < DataVeo[i]) && (DataVec[i] < MF[2][2]))

DOMTemp = Calc-Inc -MF(M F[2][0], MF[2][2], DataVec[i]);
if (DOMVec[2] == 0.0)

DOMVec[2] = DOMTemp;
else

DOMVec[2] = MIN(DOMVec[2], DOMTemp);

else if (DataVec[i] == MF[2][2])
DOMVec[2] = 1.0;

else if ((MF[2][2] < DataVec[i]) && (DataVec[i] < MF[2][3]))
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DOMTemp = Calc -Dec -MF(MF[2][2], MF[2][4], DataVeo[i]);
if (DOMVec[2] == 0.0)

DOMVec[2] = DOMTemp;
else

DOMVec[2] = MIN(DOMVeo[2], DOMTemp);

else if (DataVec[i] == MF[2][3])

f(DO~c =00
f(DOMVec[2] == 0.0)

else
DOMVec[2] = MIN( 0.5, DOMVec[2]);

if (DOMVec[3] == 0.0)
DOM Vec[3] = 0.5;

else
DOMVec[3] =MIN( 0.5, DOMVec[3]);

else if ((MF[3][1] < DataVec[i]) && (DataVec[i] < MF[3][2]))

DOMTemp = Calc-lnc-MF(MF[3][0], MF[3][2], DataVeo[i]);
if (DOMVec[3] == 0.0)

DOMVec[3] = DOMTemp;
else

DOMVec[3] = MIN(DOMVec[3], DOMTemp);

else if (DataVec[i] == MF[3][2])
DOMVec[3] = 1.0;

else if ((MF[3][2] < DataVec[i]) && (DataVec[i] < MF[3][3]))

DOMTemp = Calc Dec MF(MF[3][2], MF[3][4], DataVeci]);
if (DOMVec[3] == 0.0)

DOMVec[3] = DOMTemp;
else

DOMVec[3] = Ml N(DOMVec[3], DOMTemp);

else if (DataVec[i] == MF[3][3])

if (DOMVec[3] == 0.0)
DOMVec[31 = 0.5;

else
DOMVec[3] = MIN( 0.5, DOMVec[3]);

if (DOMVec[4] == 0.0)
DOMVec[4] = 0.5;

else
DOMVec[4] = MIN( 0.5, DOMVec[4]);
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else if ((MF[4][1] < DataVec[iI) && (DataVec[i] < MF[4][2]))

DOMTemp = Calc Inc MF(MF[4][0], MFII4][2], DataVec[i]);
if (DOMVec[4] == 0.0)

DOMVec[4] = DOMTemp;
else

DOMVec[4] = MI N(DOMVec[4], DOMTemp);

else if (DataVecti] == MF[4112])
DOMVec[4] = 1.0;

else if ((MFII4][2] < DataVec[i]) && (DataVecti] < MF[4][3]))

DOMTemp = CalcDecMF(MF[4][2], MF[4]14], DataVec[i]);
if (DOMVec[4] == 0.0)

DOM Vec[41 = DOMTemp;
else

DOMVec[4] = MIN(DOMVec[4], DOMTemp);

else if (DataVec[i] == MF[4]13])

if{ O~c4 =00
f(DOMVec[4] == 0.0)

else
DOMVec[4] = MIN( 0.5, DOMVecI4I);

if (DOMVec[5] == 0.0)
DOMVec[5] = 0.5;

else
DOMVec[5] = MIN( 0.5, DOMVec[5]);

else if ((MF[5][1] < DataVec[i]) && (DataVec[i] < MF[5][2))

DOMTemp = CalcIncMF(MF[5]I0], MF[5][2], DataVec[i]);
if (DOMVec[5] == 0.0)

DOMVec[5] = DOMTemp;
else

DOMVec[5] = Ml N(DOMVec[5], DOMTemp);

else if (DataVec[i] == MF[5][21)
DOMVec[5] = 1.0;

else if ((MF[5][2] < DataVeciI) && (DataVec[i] < MF[5)13))

DOMTemp = CalcDecMF(MFI5][2], MF[5][14], DataVec[i]);
if (DOMVec[5] == 0.0)

DOMVec[5] = DOMTemp;
else

DOMVec[5] = Ml N(DOMVec[5], DOMTemp);
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else if (DataVeoti] == MF[5][3])

if{ O~c5 =00
i(DOMVec[5] == 0.0)

else
DOMVec[5] = MIN( 0.5, DOMVec[5]);

if (DOMVeo[6] == 0.0)
DOMVec[6] = 0.5;

else
DOMVec[6] = MIN( 0.5, DOMVeo[6]);

else if ((MF[6][1] < DataVec[i]) && (DataVeo[i] < MF[6][2]))

DOMTemp = Calc Inc-MF(MF[6][0], MF[6][2], DataVec[iJ);
if (DOMVec[6] == 0.0)

DOMVec[6] = DOMTemp;
else

DOMVec[6] = M IN(DOMVec[6], DOMTemp);

else if (DataVec[i] == MF[6][2])
DOMVec[6] = 1.0;

else if ((MF[6][2] < DataVeci) && (DataVec[i] < MF[6][3]))

DOMTemp = Cab -Dec MF(MF[6][2], MF[6][4], DataVec[i]);
if (DOMVec[6] == 0.0)

DOMVec[6] = DOMTemp;
else

DOMVec[6] = MIN(DOMVec[6], DOMTemp);

else if (DataVec[i] == MF[6][3])

if (DOMVec[6] == 0.0)
DOMVec[6] = 0.5;

else
DOMVec[6] = MIN( 0.5, DOMVec[6]);

if (DOMVec[7] == 0.0)
DOMVec[7] = 0.5;

else
DOMVec[7] = MIN( 0.5, DOMVec[7]);

else if ((MF[7][1] < DataVecli]) && (DataVec[i] < MF[7][2]))

DOMTemp = Calc-lnc-MF(M F[7][0], MF[7][2], DataVeci]);
if (DOMVec[7] == 0.0)

DOMVec[7] = DOMTemp;
else
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DOMVec[7] = MI N(DOMVec[7], DOMTemp);

else if (DataVec[i] == MF[7][2])
DOMVec[7] = 1.0;

else if ((MF[7][2] < DataVec[i]) && (DataVec[i] < MF[7][3]))

DOMTemp = Calc Dec-MF(MF[7][2], MF[7][4], DataVec[i]);
if (DOMVec[7] == 0.0)

DOMVec[7] = DOMTemp;
else

DOMVec[7J = MI N(DOMVec[7], DOMTemp);

else if (DataVec[i] == MF[7][3])

if (DOMVec[7] ==0.0)
DOMVec[7] = 0.5;

else
DOMVec[7] = MIN( 0.5, DOMVec[7]);

if (DOMVec[8] == 0.0)
DOMVec[8] = 0.5;

else
DOMVec[8] = MIN( 0.5, DOMVec[8]);

else if ((MF[8][1] < DataVec[i]) && (DataVec[i] < MF[8][2J))

DOMTemp = Calci no MF(MF[8][0], M F[8][2], DataVecli]);
if (DOMVec[8] == 0.0)

DOMVec[8] = DOMTemp;
else

DOMVec[8] = MIN(DOMVec[8], DOMTemp);

else if ((DataVec[i] >= MF[8][2]) && (DataVec[i] <= MF[8][4]))
DOMVec[8] = 1.0;
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void Gen_-DOM-Min-AII( float DataVec[1 0], float MVF[DOMV][MVFPARAMVS], float
DOMVec[1O])
I
Function calculates the degree of membership for using the Min-All Compositional
Method. The Min-All method activates all the basic membe rship functions for which
each data point, then takes the minimum degree within each basic membe rship function.

Pass in the vector holding the data and the matrix holding the basic membe rship function
limits and the function passes out a vector containing the degrees of membership for each
of the basic membe rship functions.

int i;
float DOMTemnpl, DOMTemnp2;

Initialize all BMFs to zero DOM
for(i=0; iKDOM; i++)

DOMVec[i]=0;

for(i=0; i<DATAPTS; i++)

if ((DataVeo[iJ <= MF[0][2]) && (DataVeo[i] >= MF[0][0]))
DOMVec[0] = 1.0;

else if ((MF[0][2] < DataVec[i]) && (DataVec[i] < MF[0][4]))

DOMTempl = Cab _DecMF(MVF[0][2], MF[O][4], DataVec[i]);
DOMTemp2 =CaIcjInc-MF(M F[1 ][0], MVF[1 ][2], DataVec[i]);
if (DOMVeo[0] == 0)

DOMVec[0] = DOMTempl;
else

DOMVec[0] = MIN(DOMVec[0], DOMTempl);
if (DOMVec[1] == 0)

DOMVec[1] DOMTemp2;
else

DOMVec[1] =MIN(DOMVec[1], DOMTemp2);

else if (DataVec[i] == MF[1][2])
DOMVec[1] = 1.0;

else if ((MF[1][2] < DataVec[i]) && (DataVec[i] < MF[1][4]))

DOMTempl = CaIcDecM~F(MF[1][2], MVF[1][4], DataVec[i]);
DOMTemp2 = Calcj- nc -MF(MF[2][0], MF[2][2], DataVec[i]);
if (DOMVec[1 ] == 0)

DOMVec[1] = DOMTempl;
else

DOMVec[l] = MIN(DOMVec[l], DOMTempl);
if (DOMVeo[2] == 0)
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DOMVec[2] = DOMTemp2;
else

DOMVec[2] = MI N(DOMVec[2], DOMTemp2);

else if (DataVec[i] == MF[2][2])
DOMVec[2] = 1.0;

else if ((MF[2][2] < DataVec[i]) && (DataVec[i] < MF[2][4]))

DO{ml=Cl-e-FM[]2,M[]4,Dt~ci)
DOMTempl = Cab _DecMF(MF[2][2], MF[][], DataVec[i]);

if (DOMVec[2] == 0)
DOMVec[2] = DOMTempl;

else
DOMVec[2] = MIN(DOMVeO[2], DOMTempl);

if (DOMVec[3] == 0)
DOMVec[3] = DOMTemp2;

else
DOMVec[3] =MIN(DOMVec[3], DOMTemp2);

else if (DataVec[i] == MF[3][2])
DOMVec[3] = 1.0;

else if ((MF[3][2] < DataVec[i]) && (DataVec[i] < MF[3J[4J))

{ O~ml=Cl-e-FM[]2,M[]4,Dt~ci)
DOMTempl = CalcDecMF(MF[3][2], MF[][], DataVeo[i]);

if (DOMVec[3] == 0)
DOMVec[3] = DOMTempl;

else
DOMVec[3] = MIN(DOMVec[3], DOMTempl);

if (DOMVec[4] == 0)
DOMVec[4] = DOMTemp2;

else
DOMVecI4] = Ml N(DOMVec[4], DOMTemp2);

else if (DataVecti] == MF[4][2])
DOMVec[4] =1.0;

else if ((MF[4][2] < DataVec[i]) && (DataVeo[i] < MF[4][4]))

{ O~ml=Cl-e-FM[]2,M[]4,Dt~ci)
DOMTempl = CalcDecMF(MF[4][2], MF[][], DataVec[i]);

if (DOMVec[4] == 0)
DOMVec[4] = DOMTempl;

else
DOMVec[4] = MIN(DOMVec[4], DOMTempl);

if (DOMVec[5] == 0)
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DOMVec[5] = DOMTemp2;
else

DOMVec[5] = MI N(DOMVec[5], DOMTemp2);

else if (DataVeoli] == MF[5][2])
DOMVec[5] = 1.0;

else if ((MF[5][2] < DataVec[i]) && (DataVec[i] < MF[5][4]))

{ O~ml=Cl-e-FM[]2,M[]4,Dt~ci)
DOMTempl = CalcDecMF(MF[5][2], MF[][], DataVec[i]);

if (DOMVec[5] == 0)
DOMVec[5] = DOMTempl;

else
DOMVec[5J = MIN(DOMVec[5], DOMTempl);

if (DOMVec[6] == 0)
DOMVec[6] = DOMTemp2;

else
DOMVec[6] = MIN(DOMVec[6], DOMTemp2);

else if (DataVec[i] == MF[6][2])
DOMVec[6] = 1.0;

else if ((MF[6][2] < DataVec[i]) && (DataVec[i] < MF[6][4]))

{ O~m1=Cl-e-FM[]2,M[]4,Dt~ci)
DOMTempl = CalcDecMF(MF[6][2], MF[][], DataVec[i]);

if (DOMVec[6] == 0)
DOM Vec[6] = DOMTempl;

else
DOMVec[6] = MIN(DOMVec[6J, DOMTempl);

if (DOMVec[7] == 0)
DOMVec[7] = DOMTemp2;

else
DOMVec[7] = Ml N(DOMVec[7], DOMTemp2);

else if (DataVec[i] == MF[7][2])
DOMVec[7] = 1.0;

else if ((MF[7][2] < DataVec[i]) && (DataVec[i] < MF[7][4]))

DOMTempl = Cab _DecMF(MF[7][2], MF[7][4], DataVeci]);
DOMTemp2 = Calcilno MF(MF[8][0], MF[8][2], DataVec[i]);
if (DOMVec[7] == 0)

DOMVec[7] = DOMTempl;
else

DOMVec[7] = Ml N(DOMVec[7], DOMTempl);
if (DOMVec[8] == 0)
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DOMVec[8] = DOMTemp2;
else

DOMVec[8] = MIN(DOMVec[8], DOMVTemp2);

else if ((DataVec[i] >= MF[8][2]) && (DataVec[iJ <= MF[8][4]))
DOMVec[8] = 1.0;

void FillCOMMFFYVector( float DOMVec[9], float COMMFFYVec[1 01])

Function fills a two-dimensional matrix with the membe rship function values for each
basic membership function. The values in this matrix are subsequently used to calculate
the COMMEFY vector values.

Pass in the Degree of Membership vector, the function creates the two-dimensional array
of membership function values within each basic membership function. Then based upon
this matrix, the function creates the vector with the digitized COMMFFY values and
passes that
vector out.

mnt i, j, k, m, n;
float Ind200MMFFY[9][21];

for (i=0;i<9;i++)

for (j=0;j<21 ;j++)
Ind200MMl~FFY[i][j] = 0.0;

Gen-OpenLeftCOMMFFY(, 010, 20, DOMVec[0], Ind200MMFFY[0]);

for 0=1 ;j<8;j++)
GenTr _COMMFFY(j1*10,j*1 0+10, j*1 0+20, DOMVecoj], Ind200MMFFYU])

Gen-Open-RightCOMMFFY( 80, 90, 100, DOMVec[8], Ind200MMFFY[8]);

for (i=0;i<10;i++)
COMMFFYVec[i] =Ind200MMFFY[0I[i];

for (i=1 0;i<91 ;i++)

j= (i/0)-i;
k= i-j*10;
m= i/1 ;
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n= i-m*10;
COMMFFYVec[i] = MAX( Ind2COMMFFY[j][k], Ind2COMMFFY[m][n]);I

for (i=91 ;i<101 ;i++)
COMMFFYVec[i] = Ind2COMMFFY[8][i-80];

void GenTri COMMFFY( int a, int b, int c, float DOMVal, float
IndlCOMMFFY[IndCOMMFFYSize])
{
Generates the digitized Composite Fuzzy Membership Function values for a triangular-
shaped membership function.

Pass in the beginning, middle, and ending point of the membership function and the
degree of membership within. Function passes out a vector containing the individual
COMMFFY values.

int i;

for( i=a; i <= (a + DOMVaI*10); i++)
IndlCOMMFFY[i-a] = ((float)i-a)/(b-a);

for( i=ceil(a + DOMVaI*10); i <= (c - DOMVaI*1 0); i++)
IndlCOMMFFY[i-a] = DOMVaI;

for( i=ceil(c - DOMVaI*10); <=c; i++)
Indl COMMFFY[i-a] = 1 -(((float)i-b)/(c-b));

void GenOpenLeft_COMMFFY( int a, int b, int c, float DOMVal, float
Indl COMMFFY[IndCOMMFFYSize])
{
Generates the digitized Composite Fuzzy Membership Function (COMMFFY) values for
a triangular-shaped membership function with an open left end.

Pass in the beginning, middle, and ending point of the membership function and the
degree of membership within. Function passes out a vector containing the COMMFFY
values

int i;

for( i=a; i <= (c - DOMVaI*10); i++)
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mndiCOMMFFY[i-a] = MIN(DOMVaI,1 .0);

for( i=oeil(c - DOMVaI*10); i<=c; i++)
mndiCOMM FFY[i-a] = 1 -(((float)i-b)/(c-b));

void Gen-Open-RightCOMMFFY( int a, int b, int c, float DOMVaI, float
Indi COMMFFY[IndCOMMFFYSize])

Function generates the digitized composite fuzzy membership function values for a
triangular-shaped membership function with an open right end.

Pass in the beginning, middle, and ending point of the membership function and the
degree of membership within. Function passes out a vector containing the COMMFFY
values.

int

for( i=a; i <= (a + DOM Val 0); i-i+)
IndiCOMMFFY[i-a] = (((float) i-a)/(b-a));

for( i=ceil(a + DOMVa*1 0); i<=c; i++ )
Ind100MMFFY[i-a] = MIN(DOMVaI,1.0);

float DeFuzzBy-COA( float COMMFFY Vec[1 01])

Calculates the centroid of a COMMFFY based upon the Center of Area Defulzzification
scheme.

Pass in the COMMFFY Vector, and the function returns the defuzzified value.

int i;
float defuzzal, sumoweights=0, sumoposweights=0;

if( MOFPNum == 6)

for( i=0; i<=20; i++)

sumoweights += COMMFFYVec[i];
sumoposweights += (il/10.0) * COMMFFYVec[i];

266



for( i=21; i<101; i++)

sumoweights += COMMFFYVec[i];
sumnoposweights += ((i/5) -2.0) * COMMFFYVec[i];

else

for( i=0; i<101; i++)

{uoegt =CMFYe~]
sumopweights += *COMMFFYVec[i];

return (sumoposweights/sumoweights);

float CaicCOASimilarity-Measure( float DeFuzzVal, float Mean)

Calculates the COAlMean Similarity Measure.

Pass in the COA-gene rated defuzzified value and the mean the function returns the
similarity measure value.

return ((fabs(DeFuzzVal - Mean) )IMean )*100)
I

int DetermineOptimal-Method( float Metrics[METHODS])

Determines which of the compositional methods yielded the minimum value of the
similarity measure.

Pass in the row of the matrix containing the similarity measure the function returns the
index of the method with the minimum value.

int i, indexval;
float currentminval;

indexval = 0;
currentminval = Metrics[0];

for( i=1; i<METHODS; i++)

if (currentminval > Metrics[i])
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ourrentminval = Metrics[i];
indexval = i

return indexval;

void MOFP-toMOTATransformation( float MOFPMatrix[MOFPS][DOM], float
MOTAMatrix[MOFPS][DOM])

Peforms the MOFP to MOTA transformation, based upon the rules defined for a given
system. It is just a coded look-up table with the rules hardeoded in. When the rules
change, the relationships in this function must be modified.

The rules coded here are those in the FAMfor the OT&E testbed case.

Pass in the matrix containing the degrees of membe rship for the MOFPs and the function
passes out the degrees of membership for the MOTA.

Reduction in Hits to Pk transform
MOTAMatrix[O][O] = MOFPMatrix[O][O];
MOTAMatrix[O][1 ] = MOFPMatrix[O][1 ];
MOTAMatrix[Q][2] = MOFPMatrix[O][2];
MOTAMatrix7O][3] = MOFPMatrix[O][3];
MOTAMatrix[O][4] = MOFPMatrix[O][4];
MOTAMatrix[O][5] = MOFPMatrix[O][5];
MOTAMatrix[O][6] = MOFPMatrix[O][6];
MOTAMatrix[O][7] = MOFPMatrix[O][7];
MOTAMatrix[O][8] = MOFPMatrix[O][8];

Reduction in Guidance to Pk transform
MOTAMatrix[1 ][O] = MOFPMatrix[1 ][1];
MOTAMatrix[1][1] = MOFPMatrix[l][4];
MOTAMatrix[1 ][2] = MOFPMatrix[1 ][4];
MOTAMatrix[1 ][3] = MOFPMatrix[1 ][5];
MOTAMatrix[1 ][4] = MOFPMatrix[1 ][6];
MOTAMatrix[1 115] = MOFPMatrix[1 ][6];
MOTAMatrix[1 ][6] = MOFPMatrix[1 ][7];
MOTAMatrix[1 ][7] = MOFPMatrix[1 ][8];
MOTAMatrix[1 ][8] = MOFPMatrix[1 ][8];

Reduction in Track Time to Pk transform
MOTAMatrix[2][O] = MOFPMatrix[2][1];
MOTAMatrix[2][1 I = MOFPMatrix[2][4];
MOTAMatrix[2][2] = MOEP Matrix[2][4];
MOTAMatrix[2][3] = MOFF Matrix[2][5];
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MOTAMatrix[2][4] = MOFPMatrix[2][61;
MOTAMatrix[2][5] = MOEP Matrix[2][6];
MOTAMatrix[2][6] = MOEP Matrix[2][7];
MOTAMatrix[2J[7] = MOFPMatrix[2][8];
MOTAMatrix[21[8] = MOFPMatrix[2][8];

Track on Jam to Pk transform
MOTAMatrix[3[O] = MO FPMatrix[3][O];
MOTAMatrix[3][1] = MOFPMatrix[3][2];
MOTAMatrix[3][2] = MOFPMatrix[3][3];
MOTAMatrix[3][3] = MOFPMatrix[3][5];
MOTAMatrix[3][4] = MOFPMatrix[3J[6];
MOTAMatrix[3][5] = MOFPMatrix[3][7];
MOTAMatrix[3][6] = MOFPMatrix[3][7];
MOTAMatrix[3][7] = MOFPMatrix[3][7];
MOTAMatrix[3][8] = MOFPMatrix[3][7];

Increase in Track Error to Pk transform
MOTAMatrix[4][O] = MOFPMatrix[4][O];
MOTAMatrix[4][1 ] =MOFPMatrix[4][1 ];
MOTAMatrix[4][2] = MOFPMatrix[4][2];
MOTAMatrix[4][3] = MOFPMatrix[4][3];
MOTAMatrix[4][4] = MOFPMatrix[4][4];
MOTAMatrix[4][5] = MOFPMatrix[4][5];
MOTAMatrix[4][6] = MOFPMatrix[4][6];
MOTAMatrix[4][7] = MOFPMatrix[4][7];
MOTAMatrix[4][8] = MOFPMatrix[4][8];

Delay Time to Pk transform
MOTAMatrix[5][O] = MOFPMatrix[5][6];
MOTAMatrix[5][1] = MOFPMatrix[5][6];
MOTAMatrix[5][2] = MOFPMatrix[5][6];
MOTAMatrix[5][3] = MOFP Matrix[5][6];
MOTAMatrix[5][4] = MOFP Matrix[5][5];
MOTAMatrix[5][5] = MOEP Matrix[5][3];
MOTAMatrix[5][6] = MOFPMatrix[5][1];
MOTAMatrix[5][7] = MOFPMatrix[5][O];
MOTAMatrix[5][8] = MOFPMatrix[5][O];

void CaicFAMAggregation( float Weights[MOFPS], float
MOTAMatrix[MOFPS][DOM], float FAMAggrMOTA[DOM])

Function calculates the aggregated MOTA degree of membership across all MOFPs
using a modified Reduction Theorem result. If the number of MOFPs being aggregated
having zero membership function exceeds half of the available, a value of zero is
assigned. Otherwise, the maximum value of the membership function values is used.
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Pass in the matrix containing the DOM values for each MOFP transformed to the MOTA
level and a vector containing the MOFP weight values, the function aggregates across
the MOFPs and passes out a vector containing the aggregation result.

int col,row, zerocount;

for( col=O; col<DOM; col++)
{

zerocount=O;
for( row=O; row<MOFPS; row++)

if ( MOTAMatrix[row][col] == 0)
zerocount++;

if ( zerocount > (MOFPS/2))
FAMAggrMOTA[col] = 0;

else
{

FAMAggrMOTA[col] = MOTAMatrix[0][col] * Weights[O];
for( row=1; row<MOFPS; row++)

FAMAggrMOTA[col] = MAX((MOTAMatrix[row][col] * Weights[row]),
FAMAggrMOTA[col]);

}

void GetFCMAdjustment( float FCMTags[2])
{
Prompts user to enter the value of the best-case and worst-case adjustment for the
MOTA-level COMMFFYs based upon the changes suggested by the FCM.

int choice;

printf( "\n\n Input choice for BEST CASE adjustment: ");
printf( "\n Select 1 for VERY ");
printf( "\n Select 2 for MUCH ");
printf( "\n Select 3 for SOME ");
printf( "\n Select 4 for LITTLE ");
printf( "\n Select 5 to input a numerical value ");

scanf( "%d", &choice);

if (choice == 1)
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FCMTags[0] = 0.5;
else if (choice == 2)

FCMTags[0] = 0.6667;
else if (choice == 3)

FCMTags[0] = 0.8;
else if (choice == 4)

FCMTags[0] = 0.9091;
else if (choice == 5)
{

printf( "\n\n Input numerical adjustment for BEST CASE adjustment: ");

scanf( "%f", &FCMTags[O]);

printf( "\n\n Input choice for WORST CASE adjustment: ");
printf( "\n Select 1 for VERY ");
printf( "\n Select 2 for MUCH ");
printf( "\n Select 3 for SOME ");
printf( "\n Select 4 for LITTLE ");
printf( "\n Select 5 to input a numerical value ");

scanf( "%d", &choice);

if (choice == 1)
FCMTags[1] = 2.0;

else if (choice == 2)
FCMTags[1] = 1.5;

else if (choice == 3)
FCMTags[1] = 1.25;

else if (choice == 4)
FCMTags[1] = 1.1;

else if (choice == 5)
{

printf( "\n\n Input numerical adjustment for WORST CASE adjustment: ");

scanf( "%f", &FCMTags[1]);

void AdjustMOTACOMMFFY( float adjuster, float before[101], float after[1 01])
{
Adjusts the MOTA-level COMMFFY for the FCM-driven adjustment.

Pass in the value of the adjuster and the digitized COMMFFY and the function passes out
the adjusted COMMFFY.

int i;
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for ( i=O; i<C0MM FEY; i++)

if ( before[i] == 0)
after[i] = 0;

else
Calculation to raise a value to a non-integer exponent.

after[i] = exp( adjuster * og(beforelli]))
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APPENDIX F

TESTBED CASE RESULTS

This Appendix contains the full results for the application of the Intelligent Hierarchical

Decision Architecture's methodology to the testbed case -- Jammer X. Shown are the

raw data used as the initial input to the system and the output of each of the major stages

of the Intelligent Hierarchical Decision Architecture: the Clustering Methodology, the

Fuzzy Associative Memory, the Fuzzy Cognitive Map, and the Aggregation

Methodology.

B.1 RAW TEST DATA

The raw test data gathered during the OT&E of the Jammer-X system are shown below.

Ten observations of each Measure of Functional Performance against each threat system

were gathered, yielding a total of 240 data points. The data are arranged by Measure of

Functional Performance and Threat System in Table F-1 through Table F-6.
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Table F-1 Test Data Collected for MOFP #1, Percent Reduction in Hits

Percent Reduction in Hits
Run Number Threat A Threat B Threat C Threat D

1 92.88 51.67 44.76 71.43
2 75.22 52.11 30.00 32.59
3 100.00 57.28 39.15 80.16
4 81.68 64.62 40.34 71.68
5 85.14 61.54 41.67 60.34
6 82.80 63.94 32.78 61.54
7 87.45 54.62 32.58 49.15
8 81.36 59.05 33.33 50.88
9 79.21 50.91 35.00 41.36

10 87.63 62.80 32.50 37.63

Table F-2 Test Data Collected for MOFP #2, Percent Reduction in Guidance

Percent Reduction in Guidance
Run Number Threat A Threat B Threat C Threat D

1 93.47 67.89 38.35 52.97
2 83.10 67.93 38.34 67.11
3 93.04 51.94 41.75 30.77
4 84.62 52.97 41.60 38.34
5 91.03 67.11 32.82 16.68
6 76.22 68.68 36.52 41.75
7 73.61 58.90 36.25 68.68
8 75.64 52.69 43.61 58.90
9 99.10 65.39 44.70 73.04

10 98.26 63.26 32.81 84.02
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Table F-3 Test Data Collected for MOFP #3, Percent Increase in Break Locks

Percent Increase in Break Locks
Run Number Threat A Threat B Threat C Threat D

1 76.65 57.17 43.64 23.78
2 89.77 53.44 47.77 35.93
3 90.92 55.46 35.93 16.65
4 90.47 62.48 48.65 48.65
5 98.66 62.95 31.90 52.97
6 94.78 51.33 49.40 68.85
7 91.38 59.11 38.41 59.11
8 94.10 53.73 46.44 46.15
9 76.15 52.97 30.63 77.02

10 77.02 51.63 35.10 76.15

Table F-4 Test Data Collected for MOFP #4, Percent Track on Jam

Percent Track on Jam
Run Number Threat A Threat B Threat C Threat D

1 83.37 52.10 49.42 16.03
2 98.69 56.29 44.16 50.97
3 85.62 69.49 44.28 29.25
4 73.90 54.70 32.72 76.71
5 97.33 66.47 49.13 66.47
6 94.92 61.66 32.94 47.24
7 82.58 56.26 38.91 51.92
8 80.21 67.18 36.86 68.74
9 72.19 51.92 37.25 69.55

10 77.19 52.63 42.39 22.17
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Table F-5 Test Data Collected for MOFP #5, Percent Increase in Break Locks

Percent Increase in Track Error

Run Number Threat A Threat B Threat C Threat D
1 70.98 65.21 31.75 23.99
2 93.79 68.13 38.58 18.09
3 88.70 58.72 38.77 31.75
4 84.56 59.01 49.97 88.70
5 95.54 55.61 40.88 65.21
6 98.33 56.49 48.85 46.22
7 96.11 62.93 46.40 43.93
8 80.31 65.13 31.92 67.96
9 90.17 62.16 38.92 45.53

10 88.56 50.60 42.65 62.16

Table F-6 Test Data Collected for MOFP #6, Jammer Response Time

Response Time (Seconds)
Run Number Threat A Threat B Threat C Threat D

1 4.55 8.36 10.16 7.83
2 3.49 8.28 11.74 5.17
3 2.50 9.52 14.30 10.16
4 4.71 9.87 13.53 8.11
5 4.62 8.60 15.04 11.74
6 4.39 9.44 12.73 13.92
7 1.99 9.89 11.94 12.52
8 2.15 8.06 13.51 6.92
9 3.65 8.81 12.75 4.61

10 3.19 8.90 11.68 2.86
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F.2 CLUSTERING METHODOLOGY

The Clustering Methodology serves to form a Composite Fuzzy Membership Function

from the raw test data for each Threat/MOFP combination. The Clustering Methodology,

as described in Chapter 3, is composed of two basic steps. First, development of the

Basic Membership Functions either heuristically or through a fuzzy clustering of previous

data. Second, use of the On-line Optimization Method to form the optimal Composite

Fuzzy Membership Function from the raw test data and the available Compositional

Methods. The results of the Clustering Method for the testbed case are shown in Figure

F-1 through Figure F-24. The input to this stage was 240 individual data points (10

observations for each threat/measure of functional performance combination) and the

output is 24 functional performance level COMMFFYs (one per threat/measure of

functional performance combination).
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B.2.1 THREAT A COMPOSITE Fuzzy MEMBERSHIP FUNCTIONS

MOFP #1/ Threat A COMMFFY
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Figure F-i COMMFFY Indicating MOFP #1 (Percent Reduction in Hits)
Performance Against Threat A
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Figure F-2 COMMFFY Indicating MOFP #2 (Percent Reduction in Guidance)
Performance Against Threat A
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Figure F-3 COMMFFY Indicating MOFP #3 (Percent Increase in Break Locks)
Performance Against Threat A
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MOFP #4/ Threat A COMMFFY
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Figure F-4 COMMFFY Indicating MOFP #4 (Percent Track on Jam) Performance
Against Threat A
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Figure F-5 COMMFFY Indicating MOFP #5 (Percent Increase in Track Error)
Performance Against Threat A
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MOFP #6/ Threat A COMMFFY
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Figure F-6 COMMFFY Indicating MOFP #6 (jammer Response Time)
Performance Against Threat A
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F.2.2 THREAT B COMPOSITE FuzzY MEMBERSHIP FUNCTIONS

MOFP #1/ Threat B COMMFFY
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Figure F-7 COMMFFY Indicating MOFP #1 (Percent Reduction in Hits)
Performance Against Threat B
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MOFP #2/ Threat B COMMFFY
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Figure F-8 COMMFFY Indicating MOFP #2 (Percent Reduction in Guidance)
Performance Against Threat B
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Figure F-9 COMMFFY Indicating MOFP #3 (Percent Increase in Break Locks)
Performance Against Threat B
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MOFP #4/ Threat B COMMIFFY
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Figure F-10 COMMFFY Indicating MOFP #4 (Percent Track on Jam)
Performance Against Threat B
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Figure F-11 COMMFFY Indicating MOFP #5 (Percent Increase in Track Error)
Performance Against Threat B
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MOFP #6/ Threat B COMMFFY
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Figure F-12 COMMEFFY Indicating MOFP #6 (jammer Response Time)
Performance Against Threat B
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F.2.3 THREAT C COMPOSITE Fuzzy MEMBERSHIP FUNCTIONS

MOFP #1 Threat C COMMFFY
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Figure F-i 3 COMMFFY Indicating MOFP #1 (Percent Reduction in Hits)
Performance Against Threat C
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MOFP #2/ Threat C COMMFFY

1.00-

0.80

S0.60 -

S0.40 -

S 0.20-

0. 00
0 ON 00 Nl 110 Vr) It M I - 0 ON

M in 11 r-Il ~ 00 ON ON

Percent Reduction in Guidance

Figure F-14 COMMFFY Indicating MOFP #2 (Percent Reduction in Guidance)
Performance Against Threat B
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Figure F-15 COMMFFY Indicating MOFP #3 (Percent Increase in Break Locks)
Performance Against Threat C
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MOFP #4/ Threat C COMMFFY
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Figure F-16 COMMFFY Indicating MOFP #4 (Percent Track on Jam)
Performance Against Threat C
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Figure F-17 COMMFFY Indicating MOFP #5 (Percent Increase in Track Error)
Performance Against Threat C
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MOFP #6/ Threat C COMMFFY
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Figure F-18 COMMFFY Indicating MOFP #6 (Jammer Response Time)
Performance Against Threat C

289



F.2.4 THREAT D COMPOSITE Fuzzy MEMBERSHIP FUNCTIONS

MOFP #1/ Threat D COMMFWFY
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Figure F-19 COMMFFY Indicating MOFP #1 (Percent Reduction in Hits)
Performance Against Threat D
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MOFP #2/Threat D COMMFFY
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Figure F-20 COMMFFY Indicating MOFP #2 (Percent Reduction in Guidance)
Performance Against Threat D
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Figure F-21 COMMFFY Indicating MOFP #3 (Percent Increase in Break Locks)
Performance Against Threat D

291



MOFP #4/ Threat D COMiVFFY
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Figure F-22 COMMIFFY Indicating MOFP #4 (Percent Track on Jam)
Performance Against Threat D
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Figure F-23 COMMFFY Indicating MOFP #5 (Percent Increase in Track Error)
Performance Against Threat D
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MOFP #6/ Threat D COMMNFFY
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Figure F-24 COMMFFY Indicating MOFP #6 (jammer Response Time)
Performance Against Threat D

293



F.3 FUZZY ASSOCIATIVE MEMORY

The Fuzzy Associative Memory within the Intelligent Hierarchical Decision Architecture

serves to transform the Composite Fuzzy Membership Functions at the functional-

performance level to Composite Fuzzy Membership Functions at the task-

accomplishment level. This transformation is accomplished using a rule bank with the

rules written at the Basic Membership Function level (i.e., IF Reduction in Hits is low

THEN Reduction in Probability of Kill is low). For the testbed case, the Fuzzy

Associative Memory takes the functional-performance level COMMFFYs for each Threat

and transforms them to a COMMFFY indicating the system's performance at the task-

accomplishment level against each threat system. The Measure of Task Accomplishment

used in the testbed case is Percent Reduction in Probability of Kill. Figure through

Figure illustrate the four task-level COMMFFYs (one for each threat system) that are the

output of the Fuzzy Associative Memory.
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Figure F-25 Task-Level COMMFFY Indicating Percent Reduction in Probability of
Kill Performance Against Threat A
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Figure F-26 Task-Level COMMFFY Indicating Percent Reduction in Probability of
Kill Performance Against Threat B
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Threat C MOTA-level COMMFFY
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Figure F-27 Task-Level COMMFFY Indicating Percent Reduction in Probability of
Kill Performance Against Threat C

Threat D MOTA-level COMMFFY

rw 1.00.

C 0.80

0.60

0 0.40

0.20

0.00-
00 00C C"I 0 00 110 1- NC 00 .D

Percent Reduction in Probability of Kill

Figure F-28 Task-Level COMMFFY Indicating Percent Reduction in Probability of
Kill Performance Against Threat D
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B.4 FUZZY COGNITIVE MAP

The Fuzzy Cognitive Map within the Intelligent Hierarchical Decision Architecture

adjusts the task-accomplishment level performance determined at the output of the Fuzzy

Associative Memory for factors that could not be controlled or included in the testing

effort, yet are known to have an affect on the system performance measure. In the testbed

case, the Fuzzy Cognitive Map analysis yielded a +Very best-case adjustment and a -Very

worst-case adjustment due to those uncontrollable and untestable factors. These

adjustments are applied to the MOTA-level COMMFFYs shown in Figure F-25 through

Figure F-28, giving the eight MOTA-level Adjusted COMMFFYs (best-case and worst-

case for each threat system) shown in Figure F-29 through Figure F-36.
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Best-Case Adjusted Threat A COMVFFY
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1.00

0.80

S0.60

0.40

0.20 -

S 0.00 111 H II1- 1l 1H II I
0 00 c 1t Nl 0 00 O IN l 000 110

Cl N~ M It tk 10 00 00 Ol

Percent Reduction in Probability of Kill

Figure F-29 Best-Case Adjusted Task-Level COMMFFY Indicating Percent
Reduction in Probability of Kill Performance Against Threat A

Worst-Case Adjusted Threat A
COMMFFY (-Very)
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Figure F-30 Worst-Case Adjusted Task-Level COMMFFY Indicating Percent
Reduction in Probability of Kill Performance Against Threat A
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Best-Case Adjusted Threat B COMMFFY
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Figure F-31 Best-Case Adjusted Task-Level COMMFFY Indicating Percent
Reduction in Probability of Kill Performance Against Threat B
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Figure F-32 Worst-Case Adjusted Task-Level COMMFFY Indicating Percent
Reduction in Probability of Kill Performance Against Threat B
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Best-Case Adjusted Threat C COMMFFY
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Figure F-33 Best-Case Adjusted Task-Level COMMFFY Indicating Percent
Reduction in Probability of Kill Performance Against Threat C
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Figure F-34 Worst-Case Adjusted Task-Level COMMFFY Indicating Percent
Reduction in Probability of Kill Performance Against Threat C
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Best-Case Adjusted Threat D COMMFFY
(+Very)
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Figure F-35 Best-Case Adjusted Task-Level COMMFFY Indicating Percent
Reduction in Probability of Kill Performance Against Threat D

Worst-Case Adjusted Threat D
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Figure F-36 Worst-Case Adjusted Task-Level COMMFFY Indicating Percent
Reduction in Probability of Kill Performance Against Threat D
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F.5 AGGREGATION METHODOLOGY

The final stage in the Intelligent Hierarchical Analysis Methodology consists of

aggregating the information contained in the adjusted, task-level Composite Fuzzy

Membership Functions for each division of the system into a single system performance

bound. This aggregation is done by applying the Dempster's Rule of Combination

separately to the Best-Case and Worst-Case COMMFFYs. With this combination of

information, the final result is a best-case probability bound on the system performance

and a worst-case probability bound on the system performance. The calculations of the

aggregated probability bound are shown in Table F-7 and Table F-9 through Table F- 11

for the Best-Case performance; Table F-8 and Table F-13 through Table F-15 for the

Worst-Case performance. The results that would be reported to the decision-maker for

the Best-Case and Worst-Case performance are given in Table F-12 and Table F-16,

respectively.

The first step in the Aggregation Methodology is to take the COMMFFYs derived

from the first three stages of the Intelligent Hierarchical Decision Architecture and

transform them back to a single membership function value at the Basic Membership

Function level. This will serve to make the use of the Dempster's Rule of Combination

more manageable and will make the final result more meaningful (i.e., final statements

about the system performance being Medium, or Low, etc.). The Basic Membership

Function values for the best-case performance and the worst-case performance separately,

are shown below.
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F.5.1 BASIC MEMBERSHIP FUNCTION DEGREE OF MEMBERSHIP VALUES

Table F-7 Best Case Task-Level Performance at the Basic Membership Function
Level

BMF Tag BMF # Threat A Threat B Threat C Threat D
LO 0 0.00 0.00 0.00 0.93

LOMEDLO 1 0.00 0.00 0.97 0.96
MEDLO 2 0.00 0.00 0.97 0.93

HIMEDLO 3 0.00 0.95 0.95 0.95
MED 4 0.00 0.97 0.00 0.96

LOMEDHI 5 0.81 0.95 0.00 0.98
MEDHI 6 1.00 0.00 0.00 0.93

HIMEDHI 7 1.00 0.00 0.00 0.99
HI 8 1.00 0.00 0.00 0.93

Table F-8 Worst Case Task-Level Performance at the Basic Membership Function
Level

BMF Tag BMF # Threat A Threat B Threat C Threat D
LO 0 0.00 0.00 0.00 0.76

LOMEDLO 1 0.00 0.00 0.88 0.86
MEDLO 2 0.00 0.00 0.85 0.76

HIMEDLO 3 0.00 0.83 0.83 0.83
MED 4 0.00 0.88 0.00 0.85

LOMEDHI 5 0.44 0.81 0.00 0.94
MEDHI 6 1.00 0.00 0.00 0.74

HIMEDHI 7 1.00 0.00 0.00 0.96
HI 8 1.00 0.00 0.00 0.76
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F.5.2 ASSIGNMENT OF BASIC PROBABILITY ASSIGNMENT BY
DECOMPOSITION INTO ALPHA-LEVEL SETS

The next two steps in the Aggregation Methodology are to decompose the fuzzy sets

shown above into their ox-cut sets and assign the basic probability assignment to each.

The result of these two steps are shown below, first for the best-case sets followed by the

worst-case sets.

Best-Case:

m(Aos1 ) = m{5,6,7,81 = 0.81

m(A 1 .00) m m{6,7,81 = 0. 19

m(A.) =m{O}j = 0.00

m(BO.9 5) m [{3,4,51 = 0.95

m(BO.97) = m{4} = 0.02

m(B.) = mjE}j = 0.03

M(CO.95) = m{ 1,2,3 } = 0.95

M(CO.97) = m{ 1,2 } = 0.02

m(C.) = m{I9)} = 0.03

m(Do.9 3 ) = ml{0,l1,2,3,4,5,6,7,81 = 0.93

m(Do.95) = ml 1,3,4,5,71 = 0.02

m(Do.9 6 ) = m{ 1,4,5,71 = 0.01

m(Do.98) = m{15,7} = 0.02

m(Do.99) = m{71 0.01

m(D.) = mjE} = 0.01
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Worst-Case:

m(Ao.44) = m{5,6,7,8} = 0.44

m(Al.oo) = m{6,7,8} = 0.56

m(A.) = m{O} = 0.00

m(Bo.81) = m{3,4,5} = 0.81

m(Bo. 83) = m{3,4} = 0.02

m(Bo.88) = m{4} = 0.05

m(B) =m{O} = 0.12

m(Co. 83) = m{ 1,2,31 = 0.83

m(Co.85) = m{ 1,2} = 0.02

m(Co. 88) = m{ 1 } = 0.03

m(C.) = m{O} = 0.12

m(Do.74) = m{0,1,2,3,4,5,6,7,8} = 0.74

m(Do.76) = m{0,1,2,3,4,5,7,8} = 0.02

m(Do.83) = m{ 1,3,4,5,7} = 0.07

m(Do.85) = m{ 1,4,5,71 = 0.02

m(Do.86) = m{ 1,5,7} = 0.01

m(Do.94) = m{5,7} = 0.08

m(Do.96) = m{7} = 0.02

m(D.) = m{O} = 0.04
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F.5.3 COMBINATION OF INFORMATION USING DEMPSTER'S RULE OF

COMBINATION

After the basic probability assignments have been established, the combination of the

information using the intersection tableau method of Dempster's Rule of Combination is

performed. Shown below are the tableaus resulting from first combining Threat A with

Threat B, then combining Threat C with the combined Threat A-B, and finally combining

Threat D with the combined Threat A-B-C evidence.

Table F-9 Intersection Tableau Combining Best-Case Threat A Performance with
Best-Case Threat B Performance

Thr. B / Thr A m[5,6,7,8] = 0.95 m[6,7,8] = 0.19 einO] = 0.00

m[3,4,5} = 0.95 {5} = 0.7695 {0} = 0.1805 {3,4,5} = 0.0000

m[4] 0.02 {0} = 0.0162 {0} = 0.0038 {4}= 0.0000

mO] = 0.03 15,6,7,81 = 0.0243 {6,7,8} = 0.0057 {E} = 0.0000

K = 0.1805 + 0.0162 + 0.0038 = 0.2005

1-K = 0.7995

m{4} = 0.0000 / 0.7995 = 0.0000

m{5} = 0.7695 / 0.7995 = 0.9625

m{3,4,5} = 0.0000

m{ 6,7,8} = 0.0071

m{5,6,7,8} = 0.0304

m{9} = 0.0000
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Table F-10 Intersection Tableau Combining Best-Case Threat C Performance with
Combined Best-Case Threat A-B Performance

Thr. A-B / Thr. C m[1,2,3] = 0.95 m[1,2] = 0.02 min] = 0.03

m[4] = 0.0000 {0} = 0.0000 f0} = 0.0000 {4} = 0.0000
m[5] = 0.9625 {0} = 0.9144 {0} = 0.0192 [51 = 0.0289
m[3,4,5} = 0.0000 {3} = 0.0000 {0) = 0.0000 {3,4,5} = 0.0000
m{6,7,8] = 0.0071 (0} = 0.0068 {0} = 0.0001 {6,7,8} = 0.0002
m[5,6,7,8} = 0.0304 (01 = 0.0289 {0} = 0.0006 [5,6,7,8} = 0.0009

mfO] = 0.0000 { 1,2,3}= 0.0000 { 1,2} = 0.0000 {O} = 0.0000

K = 0.9700; 1-K = 0.0300

m[3} = 0.0000

m{41 = 0.0000

m{5} = 0.9625

m{ 1,2} = 0.0000

m{ 1,2,31 = 0.0000

m{3,4,51 = 0.0000

m{6,7,8} = 0.0071

m{5,6,7,8} = 0.0304

m{} = 0.0000
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Table F-11 Intersection Tableau Combining Best-Case Threat D Performance with
Combined Best-Case Threat A-B-C Performance

Thr. A-B-C [0,1,2,3,4,5,6,7,8] (1,3,4,5,7] (1,4,5,7] (5,7] [7] [0]
/Thr. D = 0.93 = 0.02 = 0.01 = 0.02 = 0.01 = 0.01

m[3] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
= 0.0000

m[4] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
= 0.0000
m5] 0.8951 0.0192 0.0096 0.0192 0.0096 0.0096

= 0.9625
m[1,2] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

= 0.0000
m[1,2,3] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
= 0.0000
m[3,4,5] 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000
= 0.0000
m[6,7,8] 0.0066 0.0001 0.0001 0.0001 0.0001 0.0001
= 0.0071 __ _ _ _ _ _ __ _ _ _

m[5,6,7,8] 0.0283 0.0006 0.0003 0.0006 0.0003 0.0003
= 0.0304

m1,91 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
= 0.0000 __
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The basic probability assignments for all the possible subsets shown in the final

intersection tableau, along with the Belief and Plausibility Functions and the Degree of

Certainty values, are shown in Table F-12 below.

Table F-12 Best-Case Basic Probability Assignments, Belief Function, Plausibility
Function, and Degree of Certainty Values

{} m{} Bel{} Pl{} DOC{}
[1] 0.0000 0.0000 0.0000 -1.0000
[3] 0.0000 0.0000 0.0000 -1.0000
(4] 0.0000 0.0000 0.0000 -1.0000
(5] 0.9621 0.9621 0.9925 +0.9242
[7] 0.0007 0.0007 0.0379 -0.9985

(1,2] 0.0000 0.0000 0.0000 -1.0000
[1,3] 0.0000 0.0000 0.0000 -1.0000
(4,5] 0.0000 0.9621 0.9925 -0.0379
[5,7] 0.0015 0.9644 1.0000 -0.0341

(1,2,3] 0.0000 0.0000 0.0000 -1.0000
[3,4,5] 0.0000 0.9621 0.9925 -0.0379
(6,7,8] 0.0068 0.0075 0.0379 -0.9857

(1,4,5,7] 0.0000 0.9644 1.0000 -0.0356
[5,6,7,8] 0.0288 0.9712 1.0000 0.0000

[1,3,4,5,7} 0.0000 0.9644 1.0000 -0.0356
[0,1,2,3,4,5,6,7,8] 0.0000 1.0000 1.0000 0.0000

[o] 0.0000 1.0000 1.0000 0.0000
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The same procedure is followed for the worst-case system performance, with the results

shown below.

Table F-13 Intersection Tableau Combining Worst-Case Threat A Performance
with Worst-Case Threat B Performance

Thr. A / Thr B m[3,4,5] = 0.81 m(3,4] = 0.02 m[4] = 0.05 m[e] = 0.12

m[5,6,7,8] = 0.44 {5} = 0.3564 {0} = 0.0088 {0} = 0.0220 {5,6,7,8} = 0.0528

m[6,7,8] = 0.56 {0} = 0.4536 {0} = 0.0112 {0} = 0.0280 {6,7,8} = 0.0672

m[e] = 0.00 {3,4,5} = 0.0000 {3,4} = 0.0000 {4} = 0.0000 {o} = 0.0000

K = 0.5236

1-K = 0.4764

m{4} = 0.0000

m{5} = 0.7481

m{3,4} = 0.0000

m{3,4,5} = 0.0000

m{6,7,8} = 0.1411

m{5,6,7,8} = 0.1108

m { } = 0.0000

310



Table F-14 Intersection Tableau Combining Worst-Case Threat C Performance
with Combined Worst-Case Threat A-B Performance

Thr. A-B / Thr. C m[1,2,3} = 0.83 m[l,2] = 0.02 m[jl = 0.03 m(&] = 0.12

m[4] = 0.0000 {0} =0.0000 {0} = 0.0000 {0} = 0.0000 {4} = 0.0000

m[5] = 0.7481 {0} = 0.6209 {0} = 0.0150 {0} = 0.0224 {5} = 0.0898

m[3,4] = 0.0000 {3} = 0.0000 {0} = 0.0000 {0} = 0.0000 {3,4} = 0.0000

m[3,4,5] = 0.0000 {o} = 0.0000 {0} = 0.0000 {0} = 0.0000 {3,4,5} = 0.0000

m[6,7,8] = 0.1411 {0} =0.1171 {0} = 0.0028 {0} = 0.0042 {6,7,8} = 0.0169

m[5,6,7,8] = 0.1108 {0} = 0.0920 {0} = 0.0022 {0} = 0.0033 {5,6,7,8}= 0.0133

m(1] = 0.0000 {1,2,3 }0.0000 {1,2} =0.0000 {1} =0.0000 {E} =0.0000

K=0.8800; 1-K=0.1200

m{ 1} = 0.0000

m{3} = 0.0000

m{4} = 0.0000

m{5} = 0.7481

m{ 1,2} = 0.0000

m{3,4} = 0.0000

m{ 1,2,3} = 0.0000

m{3,4,5} = 0.0000

m{6,7,8} = 0.1411

m{5,6,7,8} = 0.1108

m{} = 0.0000
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Using these basic probability assignments, the final bpa, Belief Function, Plausibility

Function, and Degree of Certainty values are given in Table F-16 below.

Table B-16 Worst-Case Basic Probability Assignments, Belief Function, Plausibility
Function, and Degree of Certainty Values

{} m{} Bel{} PI{} DOC{}
(1] 0.0000 0.0000 0.0000 -1.0000
[3] 0.0000 0.0000 0.0000 -1.0000
[4] 0.0000 0.0000 0.0000 -1.0000
(5] 0.7443 0.7443 0.8545 +0.4886
(7] 0.0309 0.0309 0.2557 -0.9382

(1,2] 0.0000 0.0000 0.0000 -1.0000
(1,3] 0.0000 0.0000 0.0000 -1.0000
[3,4] 0.0000 0.7443 0.8545 -0.2557
[4,5] 0.0000 0.7443 0.8545 -0.2557
(5,7] 0.0203 0.7954 1.0000 -0.1843
(7,8] 0.0029 0.0338 0.2529 -0.9634

[1,2,3] 0.0000 0.0000 0.0000 -1.0000
(1,5,7] 0.0000 0.7954 1.0000 -0.2046
[3,4,5] 0.0000 0.7443 0.8545 -0.2557
[5,7,8] 0.0023 0.8005 1.0000 -0.1972
[6,7,8] 0.1117 0.1455 0.2557 -0.7429

[1,4,5,7] 0.0000 0.7954 1.0000 -0.2046
(5,6,7,8] 0.0878 0.9122 1.0000 0.0000

[1,3,4,5,7] 0.0000 0.7954 1.0000 -0.2046
(0,1,2,3,4,5,7] 0.0000 0.8005 1.0000 -0.1995

[0,1, 2,3,4,5,6,7,8] 0.0000 1.0000 1.0000 0.0000
to] 0.0000 1.0000 1.0000 0.0000

The belief intervals are formed from the belief and plausibility function values,

giving the final solution to the decision maker in the form of a bounded probability,

independent of sample size, on which he can base his decision. The Degree of Certainty

value provides an added piece of information on the amount of certainty associated with

the decision being made.
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